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Abstract

This report presents the theoretical development,

evaluation, and applications of a new nonparametric family

of continuous, differentiable, sample distribution func-

tions. Given a random sample of independent, identically

distributed, random variables, estimators are constructed

which converge uniformly to the underlying distribution.

A smoothing routine is proposed which preserves the dis-

tribution function properties of the estimators. Using

mean integrated square error as a criterion, the new esti-

mators are shown to compare favorably against the empirical

distribution function. As density estimators, their

derivatives are shown to be competitive with other con-

tinuous approximations. Numerous graphical examples are

given. New goodness of fit tests for the normal and

extreme value distributions are proposed based on the new

estimators. Eight new goodness of fit statistics are

developed. Extensive Monte Carlo studies are conducted to

determine the critical values and powers for tests when the

null hypothesis is completely specified and when the

parameters of the null hypothesis are estimated. These

tests were shown to be comparable with or superior to tests

currently used. Forty-eight new estimators of the location

xiii



parameter of a symmetric distribution are proposed based

on the new models. For mild deviations from the normal

distribution, some new estimators are shown to be superior

to established robust estimators. Robust characteristics

of the new estimators are discussed.

xiv



NONPARAMETRIC ESTIMATION OF DISTRIBUTION AND

DENSITY FUNCTIONS WITh APPLICATIONS

I. Introduction

This dissertation develops and evaluates new non-

parametric techniques for use in data analysis. A new

family of nonparametric, continuous, differentiable sample

distribution functions is proposed to model univariate

random variables with continuous, unimodal densities. Much

of the motivation for this research effort was the dominance

of the empirical distribution function (EDF) as a basis for

goodness of fit tests and robust estimation of parameters.

This research presents a continuous, differentiable alterna-

tive to the EDF and its applications to statistical infer-

ence.

The EDF has long served as the mainstay for sta-

tistical inference. Only recently, as in a paper by Green

and Hegazy, have other sample distribution functions even

been considered as bases for goodness of fit tests

(Ref 29). These alternatives are still classical step

functions and are shown to generate powerful goodness of

fit tests. The authors of the Princeton study on robust

estimation of a location parameter, while using the EDF

1 n inm II - - m. . .



exclusively in their estimators, are careful to point out:

"We ought not to close our eyes to other definitions of the

empirical cumulative" (Ref 5:225). Their results, using

the EDF, have given a large impetus to the search for

robust estimators. Should not, then, a continuous, dif-

ferentiable, alternative to the EDF offer the potential

for improvement in goodness of fit testing and robust

parameter estimation? This investigation shows that the

new nonparametric family is a powerful tool for modeling

univariate random variables, for goodness of fit tests and

for robust estimation of the location parameter of a

symmetric distribution.

Our analysis begins with the historical background

of sample distribution functions given in Chapter II.

Plotting positions for random samples and their relation-

ship to sample distribution functions are discussed.

Chapter III presents the theoretical development of the new

family of nonparametric distribution functions. We demon-

strate that the properties of a distribution function are

preserved and discuss the conditions for uniform conver-

gence. A routine is proposed to generate a smoother

approximation for both the distribution and density func-

tions. Six specific nonparametric models are generated

from the new family and used for the remainder of the

analysis. Three of these models are adaptive based on the

estimated tail length of the underlying distribution from

2



a random sample. Chapter IV examines the literature for

techniques of distribution and density function estima-

tion. A Monte Carlo analysis is then conducted to compare

the distribution and density function estimates using mean

integrated square error as the criterion. While not spe-

cifically designed as density function estimates, the new

nonparametric models are shown to be competitive with or

superior to two other continuous density function esti-

mates. Several examples of the nonparametric estimates

are graphically displayed. The chapter concludes with a

discussion of a continuous nonparametric estimation of the

hazard function which results from the differentiability

of the distribution function estimate. Chapter V addresses

the goodness of fit problem. After a brief historical

survey, we propose eight new goodness of fit statistics.

An extensive Monte Carlo analysis is conducted to determine

the critical values for each test statistic for null dis-

tributions which are completely specified and when param-

eters are estimated. Two null distributions, the normal

and the extreme value distributions, are considered. Sub-

sequent Monte Carlo power studies show that the new tests

are competitive with or superior to certain established

goodness of fit tests. Chapter VI describes techniques

for parameter estimation using the new models. Following

a brief survey of location parameter estimation and robust-

ness, we propose forty-eight new estimators of the location

3



parameter of a symmetric distribution. The estimators

are compared with the sample mean, sample median, and

certain robust estimates proposed by Huber and Hampel.

The comparisons are made using standardized empirical vari-

ances determined by Monte Carlo simulation, maximum and

average relative deficiencies, and robust characteristics

based on approximated influence curves over nine alterna-

tive symmetric distributions. For relatively mild devia-

tions from the normal distribution, certain new nonpara-

metric estimators are shown to have smaller deficiencies

than the other estimators included in the study. The final

chapter summarizes the major results of this research

effort and also indicates potential applications of the

new nonparametric models. We conclude with a discussion

of areas for future research.

4



II. Background

Sample Distribution Functions (SDFs)

One of the initial steps in data analysis is the

formulation of a sample cumulative distribution function.

The most common of these is the empirical distribution

function (EDF) whose properties are listed in Gibbons

(Ref 27:73-75). Let S (x) be the EDF.
n

0 x < X

Sn(x) = i/n XM < x < X(i+l) i=l,...,n-i

1 x > X(n)

It is easy to construct other sample distribution

functions which are also step functions. Let

{gi} i=l,...,n be a nondecreasing sequence of real numbers

on [0,1] with g 1. Now define

0 x < X

G n(x) gi X W < x < X(i+l) i=l,...,n-i

x > X(n)

Clearly Gn (x) possesses all of the properties of a dis-

tribution function.

However, if we relax the property that

lim G (X) = 0 or lim Gn (x) = 1, we get improper sample
X -0-O X-0-0

distribution functions. An example is

5



0 x < X (1)

Gn(x) = i/(n+l) X(i ) < x < X(i+l )  i=l,...,n-1

n/(n+l) x > X(n )

It can be easily shown that the improper distribution

function just defined has the same absolute convergence

properties as the empirical distribution function. At

this point, let us defer a discussion of the properties of

either proper or improper distribution functions.

Several authors have considered specific alterna-

tives to the empirical distribution function. In choosing

a goodness of fit criterion, Pyke used the mean ranks as

the basis for his modified empirical distribution function

(Refs 10,68). Vogt also considered the mean ranks in his

evaluation of maximal deviations from the EDF and his

variant of the EDF (Ref 98). In a goodness of fit test

for a completely specified continuous symmetric distribu-

tion, Schuster proposes an unbiased estimator Gn (x) as thenI
average of the EDF and another EDF based on reflecting the

sample about the center of symmetry (Ref 82:1). He later

considers the estimate of the distribution function when

the center of symmetry is unknown. For a suitable choice

of an estimator of the center of symmetry, it can be shown

that the estimate formed by reflection about the estimated

center of symmetry is asymptotically better than the EDF

in specific cases (Ref 83). In testing for symmetry,

6



Rothman and Woodroofe required their sample distribution

function to be invariant under the transformation x--x.

Thus, they used 2F*(x) = S (x ) + S (x) where S is the

EDF (Ref 76). Hill and Rao generalized this sample dis-

tribution function in another article investigating the

center of symmetry. They point out that the invariance

property is preserved, if F* is replaced by F(a) wheren n

O<a<l and

(a)(x) aFn (x+ ) + (l-a)Fn(x-) x<O
Fn 1(l-a)F n (x + ) + aF n(X- x>0

for center of symmetry zero (Ref 36).

Forming continuous sample distribution functions

is a simple task. Let {X W } i=l,...,n be an ordered

sample. Choose a plotting rule for the {X Wi } to form the

set of plotted values {G(X(i))} i=l,...,n. A linear inter-

polation of the G(X(i)) values for each interval

X(i),X(i+l ) ]I gives a continuous function defined on

[X( 1),X(n)].- If G(X(1 ))=O and G(X(n))=l , then the function

is a proper distribution function. If not, we can con-

struct extrapolation points X(0) and X(n+l ) such that

G(X (0))= and G(X(n+l))=l. Linear interpolation based on

these extrapolated points again results in a continuous

proper sample distribution function. Spline smoothing or

exponential extrapolation for the X(0) and X(n+l ) points

7



are two other methods proposed by Andrews, et al., for

forming alternatives to the EDF (Ref 5:224-225).

Whether we use a step function or a continuous

one, the values of the sample distribution function at the

observed data points can be used to estimate the under-

lying cumulative distribution function. The next section

will examine several choices for these values, their use

as plotting positions, and the relationship between plot-

ting positions and sample distribution functions.

Plotting Positions

Used in graphical data analysis, plotting positions

represent the estimated value of the underlying probabil-

ity distribution function. As mentioned earlier, these

plotting positions could be the values of some sample dis-

tribution functions at the observed data points.

As early as 1930, Hazen recognized that the values

of the EDF were inappropriate for plotting annual flood

data. He chose the midpoint of the jumps of the EDF as

his plotting position (Ref 35). A limited survey comparing

various choices of plotting positions was undertaken by

Kimball (Ref 45). Some choices were based on specific

underlying probability distributions. White proposes

plotting positions for the Weibull distribution based on

the expected value of reduced log-Weibull order statistics

(Ref 107). For the normal distribution, Blom suggests

8



plotting the ith order statistic at (i-.375)/(n+.25). He

argues that this plotting rule

• , leads to a practically unbiased estimate
of a (the shape parameter) with a mean square devia-
tion which is about the same as that of the unbiased
best linear estimate.

He also states that Hazen's choice of plotting position

for the normal ". . leads to a biased estimate of a

with nearly minimum mean square deviation about a" (Ref 7).

While the previous discussion concerned some isolated

plotting conventions, we now examine some basic systems

of plotting positions.

Rank Distributions. Let X(1) X (n)be an

ordered sample from an underlying probability distribution

F(x). The distribution of F(X Mi) i=l,...,n is the rank

distribution. It can be shown that this distribution is

a beta distribution for each i and is independent of the

underlying distribution F, so long as F is differentiable

(Refs 19, 44). A plotting position for the ith order sta-

tistic can be thought of as a point on the ith rank dis-

tribution. The question arises as to what point on the

rank distribution should be used as a representative

choice for F(X Wi). " ee measures of central tendency,

the mean, median, and mode, are all contenders.

E(F(X(i))) = i/(n+l), the mean rank, has the property that

it divides [0,1] into n+l equally probable intervals. The

median rank, approximated by (i-.3)/(n+.4), can be used

9
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as a better representative of skewed distributions, which

most rank distributions are. For a unimodal distribution,

the mode rank, (i-l)/(n-l), approximates the maximum of

the probability density function of the rank distribution.

Thus, the selection of a plotting position is equivalent

to selecting a point from a beta distribution.

Blom's Formula. Plotting positions can also be

derived from rather general expressions. Given choices

of a and such that a, 3<l, a plotting position, Gi, can

be defined as:

i-a1 n-a-6+1

For specific choices of a and , see reference 7. From

the above formula, one can easily generate the same plot-

ting positions in the rank distributions by judicious

choices of a and 6.

A slightly more general plotting position can be

defined by

G. = -- where -l<a<<l
1 n+-

Once again, this formula allows for generation of common

plotting positions by correct choices of a and .

Table II.1 summarizes some common plotting conventions.

10



TABLE II.1

PLOTTING POSITIONS OF THE ith ORDER STATISTIC

Formula Description

1. i/n value of the empirical distribution

function

2. i/(n+l) mean rank

3. (i-l)/(n-l) mode rank

4. (i-.3)/(n+.4) median rank (approximation)

5. (i-.5)/n midpoint of the jump of the empiri-

cal distribution function

6. [n(2i-l)-l]/(n 2-1) average of the mean and mode ranks

7. (i-.375)/(n+.25) efficient approximation for the
normal distribution

8. (i-a)/(n-a-+l)
(a, <l) Blom's general plotting position

9. (i+a)/(n+a)

-I<a<a<I a more general plotting position

11



While the choice of plotting position is subject

to the analyst's discretion, one must be aware of the prob-

lem of choosing plotting positions and generating a sample

distribution function based on these positions. Once a

plotting position is picked, any number of sample distribu-

tion functions can be constructed. However, given a

specific plotting rule (midpoint of the jumps, limit from

the right, etc.), a sample distribution step function

uniquely determines the plotting positions.

12



III. New Nonparametric Sample Distribution Functions

Introduction

Having already seen the uses of various discrete

plotting positions and their relationship to sample dis-

tribution step functions, we now propose a new family of

approximations. The next section presents the theoretical

development of a family of nonparametric, continuous, dif-

ferentiable sample distribution functions. Properties of

distribution functions are preserved and uniform conver-

gence is demonstrated. A smoothing routine is selected

which again preserves the distribution function properties.

Three specific nonparametric models are developed by a

detailed analysis of the stylized and random samples from

selected members of the Generalized Exponential Power dis-

tribution. Finally, three adaptive nonparametric models

were proposed based on using percentile ratios as a dis-

criminant.

Theoretical Development

Consider a random sample X Xn of size n from

an unknown univariate, continuous, probability distribution

function F. Let X(1 ),. . .,X (n) be the ordered sample. Now

let Gi = G(X ), i=l,...,n, be the plotting position for

13



the ith order statistic based on some sample distribution

function G.

Our goal is to estimate F by a nonparametric

approach while preserving the following properties of the

estimator, Fn:

1. F is differentiablen

2. F is a distribution functionn

3. F n(Xi) = Gi, i=l,...,n

Linear interpolation will, of course, satisfy conditions

2 and 3, but we require differentiability at the data

points. What is needed is a family of nondecreasing

curves on [X (i ) , X (i+l )  such that

lim Fn(x) = lim+ F'(x) for each i=l,...,n
xnX. X n

1 1

Arbitrarily, set the derivative equal to zero at each data

point. Now, consider the midpoint of the interval

[X(i ) , X ]. Let

(X (i) +X (i+l) Gi+Gi+l

n 2= 2

Consider the function -acosy, which is monotoni-

cally increasing on the interval [0, 7] where a is a con-

stant. Making the transformation

GX( i+l)-X (i)

14



yields

(W= G+G + a cos xX (3.1)(i+l) -X(i))

Requiring F n(X ) = Gi for each i=l,...,n gives

G -Gi+l ia=~2

Defining extrapolation points X(0) and X(n+l ) such that

G0 = 0 and Gn+1 = 1 completes the derivation. Thus,

equation 3.1 becomes:

0 x<X 0
I Gi -G. cs XiX )

F (x)= G + 2+1 1 i (3.2)
nGi 2 (i -cos( l-x )

(i) X(i+l) i0

1 x>Xn+1

Differentiating, one immediately obtains an esti-

mate of the probability density function.

( G i + l-G i  si XX (3

-X s1 1 inr (X (3i32\x -i+)i-x (i)} \(i~l) -X~i
fn(X) =

X(i)<< (i+l) , i 0 . .,

0 elsewhere

Clearly, the derived Fn (x) satisfies the three

properties required. However, the utility of such an esti-

mate can certainly be questioned at this point.

15



Figures 3.1 and 3.2 show the estimates of the cumulative

and density functions respectively for a random sample

of size 20 from a normal distribution with zero mean and

unit variance. The plotting positions chosen were the

average of the mean and mode ranks. The extrapolation

points X(0 ) and X(n+l ) were chosen as: X(0 ) = 2X(1 ) - X(2 )

and X(n+l ) = 2X(n ) - X (n- ) ' The estimated CDF does approx-

imate the true CDF in a continuous fashion, but provides

the same inferences about the underlying population as

the plotting positions themselves. The estimated PDF plot

is analogous to a histogram with the intervals chosen to

contain only one data point. Some shape of the underlying

density can be inferred, especially with larger sample

sizes, but any inference concerning the density shape or

type is limited.

The basic undesirable property in the development

thus far has been the zero derivative of the estimated

cumulative distribution function at the data points. To

avoid these zero derivatives, consider applying a variation

of the jackknife. This technique was developed by

Quenouille (Refs 70,71) as a means of reducing the bias of

an estimator. In an abstract, Tukey proposes using the

technique for robust interval estimation (Ref 96). An

excellent survey and bibliography is given by Miller

(Ref 58). More recent applications and extensions of

16
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the jackknife may be found in Gray, et al., and Cressie

(Refs 15,28).

Analogous to Quenouille's development, let
X (1),...,X(n) be an ordered sample. Choose k<n/2 to be

the number of subsamples. Beginning at X(1 ) form the sub-

samples by assigning each successive order statistic to a

new subsample until the k+l order statistic is reached.

Repeat this assignment process beginning with this order

statistic, using the same ordering of subsamples, until all

n order statistics are assigned.

Mathematically, if k is the number of subsamples,

then n=km+r where m=I[n/k] and r=n modulo k. Now let t

index the subsamples, £=l,...,k and let y(j,£) be the jth

element of subsample k. Thus,

(j,k) = X(+k(j-l))

where j=l,...,m if £>r

j=l,...,m+l if £(r

Clearly, there will be k ordered subsamples, r of which

have size m+l and k-r have size m.

Returning to the zero derivative problem, now that

the subsamples are generated, consider the following esti-

mate of the cumulative distribution function. Form k

estimates, SFZ(x), where SF9(x) = Fn,(X) for £=l,...,k

and Fn*(X) is the continuous, differentiable, sample

19



distribution function defined in equation 3.2 and

n* m if £>r
n*= {m ifThe derivatives SF'(x) are zero at eachm+l £<r" 9

data point of the subsamples. Now simply average thc-.e

estimates to form the sample cumulative function,

k
SF(x) = k E SF£(x) (3.4)k =

and sample density function

Ik
sf(x) = SF (x) = k

P=1

Note that each of the subsamples has its own

extrapolated points, Y(0 1,) and Y (n*+l,)" Now let

Xmin = min {Y (0,)}

and Xmax =max {Y(n*+l,£).

Thus, the cumulative and density functions in equations

3.4 and 3.5 are formally defined as:

0 X<Xmi n

k
SF(x) E 1 SF9(x) X min<x<Xmax (3.6)

k=i

x> max

k

E SF'(x) Xm. <x<X (3.7)

sf(x) = Z=l mi- - max

(0 elsewhere

20



Two important results occur by this averaging.

First, while we required that Fn (Y(.,)) = G. for each
nJ

data point in the subsample, SF(Y(j,)) is not necessarily

equal to the G(£+k(j-l)) for the entire sample. Thus, we

are no longer tied to restricting our estimates to the

plotting positions of the original sample. Second, while

each SF.(Y(jl)) = 0, SF(Y(jl)) = 0 only if there are at

least k data points identically equal to Y(jZ). Since

the assumed underlying distribution function is continuous,

the probability of such an event is zero. Of course, in

actual data sets, due to measurement accuracy, this event

may occur. However, since it would require k occurrences

in the same random sample to force a zero derivative, the

limitation does not appear to be unreasonable. Figures 3.3

and 3.4 show the effect of averaging on the normal sample

of size 20 considered previously. The number of subsamples,

k, was chosen as four. Both the distribution and density

functions are beginning to identify the shape of the under-

lying random variable.

Properties

Now that we have defined estimates for both the

cumulative distribution and density functions by equations

3.6 and 3.7, we need to examine their properties. Spe-

cifically, we will consider the distribution function

properties and uniform convergence.

21
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Let R1 be the real line, the borel field on R
1

and P, a probability measure defined on . The function

F defined on (R , , ) by F(x) = P({tER -c<t<x}) is the

distribution function of P. Any standard probability text

gives the properties of F (see references 13 and 49

F satisfies the following three properties:

1. F is nondecreasing

2. F is continuous from the right

3. 1lim F(x) = 0 and lim F(x) = 1
X -)-0 X-).0

The function SF(x) defined in equation 3.6 clearly satis-

fies these properties. Further, since each SF (x) is

differentiable for each x , SF(x) is also differen-

tiable.

To examine the convergence of our estimator in

equation 3.6, we begin by examining the convergence of

step functions for subsamples.

Theorem 3.1. If Sn* is a sample distribution

function based on a subsample of the form

fY j, ) jk,. ,* =l, .. .,k<co,

where Y X
(j, ) (k+k(j-1))

as defined in the previous section, and

n= {m if £>r
m+l if Z<r

24



then Sn*(x) converges uniformly to F(x) where

0 x< Y(1£

Sn,(x) = j/n* Y(j,)<_x<Y(j+l,, )  j=l,...,n*

1 x>Y (n*,k)

Proof. Without loss of generality, let F have a

finite support [a, b] in R
I.

Let D sup ISn*(x) - F(x)I=In * n s (x) - F(x)l
_n<x<C i n

where S (x) is the EDF.

I' n~i-jn\\ ni

Now D< sup Is (x) -F(x) I+ n*i ) Sn(X)
-o< X<cO nI(

By construction, n=km+r, i=kk(j-l), r<k, and £<k<-.

For simplicity, consider the case n*=m (n*=m+l is similar

with slightly more algebra).

So, D< sup IS (x)-F(x)I +(m(k+k(j-1))-j(km+n) ) W-_ O<x<OO n \ m(-+k (j-l)) Sn(

k r
< sup IS (xl-Fx)l + ] S n x)

-_<x<c n + k -

lim D < lim D + sup "
n -- n-- n _00<X< k5

25



Case i: x=a

n- implies m-- , j-l, S (x) 0n

Case ii: xE(a,b]

n- implies m-- , j

Since £<k<- and r<k<oo, and since P[lim Dn=0] = 1 by
n-oo

Glivenko's Theorem (Ref 73:353), P[lim D =0] = 1.
n-oo

We 'iow have established uniform convergence for

sample distribution functions based on our constructed

subsamples. Let us consider a general sample distribution

function defined on these subsamples. We will continue to

use n*=m.

Theorem 3.2. SF (x) converges uniformly to F(x)

where

0 x<Y(l,)

SF- (x) = j+)m+ (j,)Y-(j+l,£ ) j=l,...,m

x>Y (m+l,9,)

and -l<X<5<1, Y (m+l,£) Y(m,£) + 6

where &0 as m+

Proof.

0 S (x) x<Y(il,)

SF-(x) = j+0L m Yj, <<Y0+IZ )m+a j m

i gm( x>Y (m+l,k)
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Now let D* = sup ISF- (x) -F(x)In -('<x<00

<Dn + sup m (x
- -0cc<x<0 1 + 0Jm) XI

m

Again, if x is an interior point or an end point the second

term approaches zero as n,- Thus, by Theorem 3.1

P[lim D*= 01 1
n

A slight modification of the hypothesis of

Theorem 3.2 gives another family of estimators which con-

verge uniformly to F(x). The proof of the following

theorem is similar and thus omitted.

Theorem 3.3. SF (x) converges uniformly to F(x)

where

0 x<Y(0 ,90

F+ X j+l+ <x<Y j=0 1 .. ,m-i
SF, x) m+B (j,£)- (j+l,z)

1 x>Y (m,)

and x<a<a<l, Y(0,k) = Y(I,£)- 6

where 6-0 as m-.

We now have, by the previous two theoieins, two

families of sequences of estimators which converge uni-

formly to the underlying probability distribution

27



function F(x) . Now consider SFI (x) as derived in the pre-

vious section and define G 1  SF k (Y j) for j=O,l,...,m+l.

Thus

G. SF+( for j=O,l,...,m

since SF~ (Y( SF)+=(Y

We know by construction that

SF WX < SF ~(x) < SFz +xW for every x.

This implies that

urn sup jSF-(X) - F(x)I
n-w -cO<x<cO

< urn sup ISF(x)-F(x)I( lrn sup JSF+(x)-F(x)I

From Theorems 3.2 and 3.3, we can summarize with

the following theorem.

Theorem 3.4. SFj x) converges uniformly to F(x)

where

SF OX) G G. + 1______YX- - 9tJ 1)

2 <x+<kY-Y0,k
Y(ilk)21- (j+l,k)

1 x>Y M1Z
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and G = G(Y 0 )) j=0,1,...,m+l

where

0 x<Y,(1 1)

G(x) = (j+c)/(m+ ) Y(j,z)<x<Yj+IZ ) j=l,...,m

I x>Y (m, ,)

for -l<<<l

To prove our final result, we need a lemma.

Lemma 3.5. A finite convex combination of esti-

mators which converge uniformly to F(x) also converges

uniformly to F(x).

Proof. Let {T i,n(x)} i=l,...,k be a sequence

of estimators converging uniformly to F(x), i.e.,

P(lim sup IT. (x) - F(x)f= 0) 1 for i=l,...,k

and let k<-.

k
Now let T n (x) = E a.T. (x)i=l n

k
and E a. =i=l I

for O<a. <1

lim sup IT(x) - F(x)
no -co<x<w2
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k k
= im sup I a c*.T. (x) - E a.F(x)I

n o -o<x<w i=l 1 1,n i=l

k Ti (x) F F(x) I

< lim sup Z a in
n-)-o -<x<00 i=l

k
< Z a1 lim sup IT i  (x) - F(x)I-i=l n-oo -w<x<oo ,

since k<o

Each term in the sum is zero by hypothesis. The uniform

convergence of the finite convex combination follows

immediately.

Applying the previous lemma to the function SF(x)

as defined in equation 3.6, we can state the following

theorem.

Theorem 3.6. SF(x) as defined in equation 3.6,

converges uniformly to F(x).

At this point we have an estimator SF(x) of F(x)

which is itself a continuous, differentiable distribution

function and also converges uniformly. The same results,

however, are not available for the derivative, sf(x).

While it is true that sf(x) is continuous and differentia-

ble almost everywhere, convergence properties will have to

be inferred from the Monte Carlo analysis of Chapter IV.
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Smoothing

Although the estimator family has been defined

and the properties listed, a quick glance at Figures 3.3

and 3.4 indicates possible room for improvement. If we

could dampen some of the sinusoidal activity in both the

sa, ple cumulative and sample density functions, our esti-

mators should better approximate the underlying process.

Two methods of such a smoothing were initially investi-

gated: spline smoothing and a Fourier smoothing method.

Once SF(x) and sf(x) have been determined we can

generate their values at each data point X. to form the

sets {SF(X i=,...,n and {sf(X)}I At this

point, however, note that we are not restricted to the

original data set. We could choose a set {Zj j=l,...,m
and its corresponding sets {SF(Z.)Ij=I,..., m and

{sf(Zj)} . by an arbitrary rule, such as equally

spaced points in the domain or inversion of SF(x) at some

specified plotting positions. Thus m, the number of

points used in smoothing, can be as large (or small) as

we choose.

To apply spline smoothing (Ref 109) we can proceed

in two directions: (1) independently smooth both the dis-

tribution and density functions, or (2) smooth only the

distribution (density) function and analytically differen-

tiate (integrate) to get the density (distribution)
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function. Proceeding in either of these directions opens

the possibility of negative density values.

A second smoothing technique was hypothesized from

the density and cumulative estimation work of Kronmal and

Tarter (Refs 40,48). Their investigation yielded estimates

with impressive mean integrated square errors (MISEs).

Analogous to the spline methods, we could use the Fourier

approximation method of Kronmal and Tarter independently for

the distribution and density functions or separately and

derive the oth4r. The same drawback occurs using the

Fourier expansion as with splines--negative density values.

Since our initial goal in this development was to preserve

the distribution function properties of our estimators as

well as add differentiability, it would be foolish at this

point to abandon this aim in favor of the possible smooth-

ing advantages of spline or Fourier expansions. Thus, both

spline smoothing and the use of Fourier expansions were

discarded.

The availability of both distribution and density

function estimates at arbitrary points in the domain sug-

gested an alternative approach. In a 1979 article, Efron

(Ref 23) developed a "bootstrap method" related to the

"double Monte Carlo" method proposed by Moore (Ref 59).

Both methods estimate the distribution function based on

sample data and then create a pseudosample by sampling

from this estimated distribution. Rather than sampling
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from the estimated distribution, as these authors suggest,

consider inverting the estimated distribution at specific

points according to some rule. Specifically, solve
SF(Z.) Gj for Z where {G are pre-

(J) j (j)' ,,.,maepe
determined plotting positions. The set {Z (jm

is now a pseudosample based on some regular divisions, the

plotting positions Gj, of SF(x). Having generated this

pseudosample, now apply equations 3.6 and 3.7 to form new

estimates of the distribution and density functions. Of

course, this inversion process could be repeated and other

estimates formed on the basis of new pseudosamples.

The previous derivation clearly preserves the dis-

tribution function properties of the estimators, as well

as differentiability and continuity. By inverting SF(x)

at the plotting positions G., we also preserve ordering

and spacing information contained in the original sample,

in contrast to the random sampling procedures of Moore

and Efy -n. Although no formal proof of uniform conver-

gence of this smooth distribution function estimator is

presented, empirical evidence from graphical and Monte

Carlo analysis of this estimator strongly suggests that

uniform convergence is preserved. We will postpone a

detailed analysis of these estimators to the results of

Monte Carlo analyses of the next chapter.

Figures 3.5 through 3.9 give a graphical display

of the smoothing technique proposed for our random sample
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of size 20 from the normal distribution. Figures 3.5 and

3.6 show the smoothed approximation and the true underly-

ing standard normal distribution. Figures 3.7 and 3.8

compare the smoothed approximation to a normal distribu-

tion whose parameters are minimum variance unbiased esti-

mates. Note the performance of the nonparametric model

without the assumption of normality. Figure 3.9 compares

the smoothed approximation to the empirical cumulative

distribution function. Choices for the plotting positions,

inversion points, and other variables have been made using

methods discussed in the next section.

Choice of Variables for

the Estimators

Since the approximation method and smoothing tech-

nique have been defined, we now seek to identify the vari-

ables needed to form our final estimators. The investiga-

tion will examine five sets of variables: (1) the number

of subsamples for a given sample size; (2) plotting

positions, {Gj} j=l,...,n* for each subsample; (3) extrapo-

lation values, Y(0) and Y(n*+l) for each subsample;

(4) inversion points for the smoothing routine to generate

the pseudosample; and (5) the number of inversions.

Judicious choices of these sets of variables should give

us an estimator with good approximating properties.

Due to the array of possible choices of the vari-

ables and their complex interaction in the estimators, it
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was necessary to restrict each set of variables to a manage-

able set of choices. We will rely on numerical and Monte

Carlo analysis to determine the choices for our variables.

No claim of optimality will be made, but we will attempt to

justify our variable selections as reasonable for the

situations considered. First, let us examine each set of

variables and its restricted domain.

Number of Subsamples. Given an ordered sample of

size n, let k be the number of subsamples generated via

the method outlined earlier in this chapter. We require

that k<n/2, for each subsample to contain at least two

points, and also that k remains finite as n approaches

infinity to satisfy the uniform convergence of the

unsmoothed estimator of equation 3.6. For samples of size

100, k was initially chosen as an element of {5, 10, 15, 20}.

Subsequent choices of the domain of k were made and will

be identified at appropriate steps in the analysis.

Plotting Positions. Given each ordered subsample

of size n*, a plotting position Gj, j=l,...,n*, is assigned

to each order statistic. The following plotting positions

were chosen from Table I.l:

1. Mean ranks

2. Median ranks

3. Midpoint of the jumps of the empirical dis-

tribution function
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4. Average of the mean and mode ranks

5. Any of the above four plotting positions based

on the entire sample, rather than each subsample. For

example, each Y(,,j) has plotting position Gi, i=l,...,n

associated with it where Y(9") = X(k+k(j..)) = X(i)

the ith order statistic of the entire sample.

Extrapolation Values. For each subsample define

(0) = g(l) - A(Y( 2 )-Y( 1 )) and Y(n*+l) (n*) + (Y(n*) -

Y, where A is the extrapolation value. The choices

of A that were considered are:

1. 0, which puts a finite probability at each

extreme order statistic of each subsample

2. 0.5

3. 1.0

4. 1.5

5. Choose A equal to the ratio GI/(G 2-G) . This

choice extrapolates the data points proportionately to

their plotting positions. Since the plotting positions

listed previously are symmetric, A is also equal to

(l-Gn )/(Gn,-Gn,_l) Note that if plotting position 5 is

used, then the extrapolation points are calculated only

once based on the entire sample and then remain constant

for each subsample.

Inversion Points. Once the subsamples are defined,

we need a rule for inverting equation 3.6 to create a
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pseudosample. Our choices for inversion points are the

first four plotting positions listed previously based on

the entire sample. Thus the pseudosample {Z.I i=1,...,N

is defined by Zi=SF-1 (Gi) where Gi is one of the four

plotting conventions based on a sample of size N. Numeri-

cal calculations of SF- (Gi) were accomplished via a

Newton-Raphson method. Adjustments to the extreme points

of the pseudosample were sometimes necessary. See Appen-

dix 6 for a further discussion.

Number of Inversions. Since the inversion process

can be repeated by creating another pseudosample, the

number of repetitions needs to be determined. Due to the

computational effort required and some preliminary investi-

gation of repeated smoothing, a maximum of two inversions

was considered practical. Estimators smoothed more than

twice improved very little, if at all. Thus the number

of inversions, I, was constrained to the set {0, 1, 21.

Now that we have restricted our variables to man-

ageable sets, let us now describe the procedure for select-

ing specific distribution function estimators by identify-

ing particular choices of our variances. Our goal is to

provide reasonable values for these variables in a limited

situation in the hope of robustness over a wider class.

* To that end, let us consider only sample size 100 for the

present. We also need a criterion for choice of the
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variables. A widely accepted criterion is mean integrated

square error (MISE) (Refs 40 , 48, 103, 104, 105). MISE =

E - [f(x)-f(x)] 2w(x) (dx), where f is the true function,

f is the estimator, and w is the weight function. The

integrated square error can be approximated numerically

since our estimators are continuous. As a criterion, we

will use an approximation to the integrated square error

for both the distribution and density functions. For com-

parison purposes, other criteria were also used. These

included Kolmogorov-Smirnov (K-S) distance, K-S integral

and modified K-S integral distances, Cramer von Mises (CVM)

and modified CVM integrals, Anderson-Darling (AD) and modi-

fied AD integrals and average square error (ASE). For a

discussion of these criteria, see Appendix 1.

To numerically evaluate the variable choices, we

also need to know the true underlying distribution. We

chose three members of the Generalized Exponential Power

Distribution family as our test distributions (see Appen-

dix 2). The members chosen were the double exponential,

normal, and uniform distributions. Although restricting

ourselves to a symmetric family, the three members selected

give three distinct measures of tail length, ranging from

leptokurtic to mesokurtic to platykurtic. The density

functions also possess unique central shapes--the double

exponential being concave, the normal convex, and the

uniform linear. As such, it was conjectured that
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estimators which performed well over this limited set of

distributions would perform well over a much wider class.

The variable selection procedure, itself, consisted

of two main steps: examination of "stylized" samples and

examination of random samples. We shall deal with each in

turn.

Stylized Samples. Given a sample size of 100, we

generated a "stylized" sample by inverting each test dis-

tribution at the inversion points. We repeated the process

for all four possible inversion values. Next, we calcu-

lated values for all of the distance criteria for the 400

combinations of the number of subsamples, plotting posi-

tions, extrapolation values and inversion points. The

rationale at this stage is related to the underlying

philosophy of Fisher consistency (Ref 73:281). Strict

Fisher consistency requires that an estimator yield the

true parameter when true proportions are realized in the

sample. For our purposes, we require an estimator to be

reasonably close to the true value when the input sample

is stylized. Table II.1 summarizes the results of the

stylized sample analysis. Four sets of variables were

chosen for future consideration because of their "good"

performance with respect to the modified CVM integral

criterion. All three sets of variables which minimized

the modified CVM integral for the distribution function
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TABLE III.1

VARIABLE SETS BASED ON MODIFIED CVM INTEGRAL VALUES
FOR THE DISTRIBUTION FUNCTION

Distribution

Double

Variables l'  Exponential Normal Uniform

(5,3,3,2) 6.83xi0 - 7  3.78xi0 - 7  1.78xi0 -6

(5,4,3,2) 3.28xl0 7 (2 )  6.19x10- 7  3.39xi0 -6

(5,5,3,2) 6.91xi0 - 7  4.43xl0-6  1.13xlO- 9 (2 )

(5,4,5,3) 1.32x10-6  3.51xlO- 7 (2)  4.62xi0 - 7

All entries listed are values of the modified
Cramer von Mises integral of the distribution function.

Note 1: Variable sets are indexed based on their
domains given earlier in this chapter. Terms correspond
to (number of subsamples, plotting position, extrapolation
value, inversion points).

Note 2: Minimum modified CVM integral value for
that distribution.

were selected. The other set selected performed well for

both Jhe normal and double exponential distributions.

In examining the results of the stylized sample

analysis, four observations were made. First, inversion

points based on the median ranks outperformed the other

choices. Second, plotting position 5 was clearly superior

when the underlying distribution was uniform. This observa-

tion confirmed our intuition since all of the information

in a sample from the uniform distribution is contained in

the two extreme order statistics. Plotting position 5 uses

an extrapolation scheme based on the entire sample and thus
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estimates the bounds of the distribution better than using

extrapolated points based on the subsamples. Third, over-

all, the extrapolation values appeared arbitrary. Fourth,

the number of subsamples determined in the "best" sets of

variables seems low, probably due to the ideal spacings

generated by the stylized samples. Based on these observa-

tions, we decided to fix the plotting positions, extrapola-

tion values, and inversion points as determined by the

four best variable sets. For these combinations, we now

want to evaluate the functions on a limited number of

random samples.

Random Samples. Given a fixed set of four combina-

tions of plotting positions, extrapolation values, and

inversion values as determined from the stylized samples,

we now propose to determine choices for the number of sub-

samples and the number of inversions. Twenty-five random

samples of size 100 from each of the test distributions

were drawn and evaluated via averaged modified CVM inte-

grals for both the distribution and density functions.

Table 111.2 lists the optimal choices of the sets of vari-

ables with respect to the CVM criteria. Based on the

results of the random sample analysis, four conclusions

were drawn: (1) there is no clear-cut optimal choice of

variables across all three test distributions; (2) the

optimal choice for the uniform performs poorly for the
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TABLE 111.2

OPTIMAL CHOICES FROM RANDOM SAMPLES

Modified CVM Integral Values

Variables (1) Distribution Function Density Function

1. Double Exponential

A. (5,4,5,3,0) 7.56x10 -4 2 )  3.19x0 -2

B. (15,4,3,2,2) 7.80x10-4  1.52x10 -3 (2)

2. Normal

A. (25,4,3,2,1) l.27x10-3  1.12xl0- 3 ( 2 )

B. (25,4,3,2,2) 1.17xl0- 3 12 )  1.31xl0-3

3. Uniform

(25,5,3,2,2) 5.00xl0-4 ( 2 )  i.22xl0- 3 (2)

Note 1: Variables are listed in the same order as
in Table III.1 with the last variable added being the
number of inversions.

Note 2: Denotes minimum value for that criterion
and distribution.

47



other two distributions; (3) plotting position 4, the

average of the mean and mode ranks, outperformed plotting

position 3, the midpoint of the jumps of the empirical dis-

tribution function, in every case; and (4) the inversion

values at the median ranks outperformed the others in most

cases. From these observations, we decided on forming

three different models using the optimum, or nearly opti-

mum, choices for each test distribution. Table 111.3

summarizes the three models. Model 1 was developed from

nearly optimum choices based on the double exponential dis-

tribution, Model 2 from the normal distribution, and Model 3

from the uniform distribution. These models were derived

solely for sample size 100. Other random sample sizes

were then investigated. Given random samples of size 20, 50,

175, and 250, we fixed all of the model parameters except

for the number of subsamples. We also introduced a sixth

pair of variables, N, the number of points to invert, and

K, the number of subsamples used after an inversion. Based

on twenty-five random samples from each sample size and

using the modified CVM integral criterion, we developed

nearly optimal selections of the number of subsamples, k,

as well as N and K. Table III.4 gives the relationships

between sample size and the number of subsamples for the

three models based on their corresponding GEP distribution.

These selections were denoted nearly optimal for two

reasons. First, only avery few cases had N, the number of
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TABLE 111.3

NONPARAMETRIC MODELS 1, 2, AND 3

Model 1

Number of subsamples -- 15

Plotting positions -- average of mean and mode ranks

Extrapolation value -- 1.0

Inversion points -- median ranks

Number of inversions -- 2

Model 2

Number of subsamples -- 25

Plotting positions -- average of mean and mode ranks

Extrapolation value -- 1.0

Inversion points -- median ranks

Number of inversions -- 1

Model 3

Number of subsamples -- 33

Plotting positions -- median ranks of the entire sample

Extrapolation value -- 1.0

Inversion points -- median ranks

Number of inversions -- 2

All models are valid for sample size 100 only.
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TABLE 111.4

NUMBER OF SUBSAMPLES VERSUS SAMPLE SIZE

Number of
Sample Number of Inversion Number of
Size Subsamples Points Subsamples

Model (n) (k) (N) (K)

20 5 20 5

50 10 50 10

100 15 100 15

175 30 100 15

250 45 100 15

2 20 10 20 10

50 25 50 25

100 25 100 25

175 35 100 25

250 50 100 25

3 20 10 20 10

50 25 50 25

100 33 100 33

175 80 100 33

250 125 100 33
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inversion points, greater than 100 as the optimal choice.

The difference in the CVM criteria for the optimal choice

and the value listed in Table III.4 was insignificant.

For example, for sample size 50 using Model 3, the range

of values for the modified CVM integral was [.00088,

.00190) for the distribution function and [.00189, .00760]

for the density function. The actual values chosen

correspond to .00088 and .00190 for the distribution and

density functions respectively. Thus, the decrease in the

criteria did not justify the added computational effort

to invert more than 100 points. The number of points in

each pseudosample, N, was defined using the following

algorithm:

20 n<20

N = In 20<n<100

100 n>100

The number of subsamples for the pseudosample, K, was

defined to be the corresponding k for n=N. Second, due

to the high variability of such a small Monte Carlo sample

size, we again opted for reasonable values which followed

a generally regular trend.

The number of subsamples for sample sizes not

listed in Table III.4 was arbitrarily determined by con-

structing step functions for each model such that the

average number of points in each subsample followed a near
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linear interpolation through the k versus n points listed

in the table. For sample sizes greater than 250, we use

the value of k for n=250. This choice allows the models

to exhibit the uniform convergence property shown earlier

in this chapter since the number of subsamples stays finite.

Figures 3.10, 3.11, and 3.12 show the plots of k versus n

for the three models. Figure 3.13 shows the k-n relation-

ship for model 2* developed in conjunction with an adap-

tive procedure discussed in the next section. Table 111.5

shows the relationship of the average number of points in

each subsample to the sample size for the three models.

Adaptive Approaches

Each of the three models generated in the previous

section was based on stylized and random samples from a

specific distribution. The variables for Models 1, 2, and

3 were chosen by comparison with the double exponential,

normal, and uniform distributions respectively. While the

models are strictly nonparametric and perform well given a

specific underlying distribution, their performance for an

unknown distribution is yet undetermined.

Since the three members of the GEP distribution

represent vast differences in shapes and tail length, and

since each nonparametric model proposed has been associ-

ated with a specific member of the GEP family, it became

a natural extension to consider a nonparametric adaptive

model using the three models already developed.
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TABLE 111.5

SELECTED VALUES OF k AND n FOR THE NONPARAMETRIC MODELS

Sample
Size Model 1 Model 2 Model 3 Model 2*
(n) k n/k k n/k k n/k k n/k

5 2 2.5 2 2.5 2 2.5 2 2.5

10 3 3.33 5 2.0 5 2.0 2 5.0

15 3 5.0 7 2.14 7 2.14 3 5.0

20 5 4.0 10 2.0 10 2.0 4 5.0

25 5 5.0 12 2.08 12 2.08 5 5.0

50 10 5.0 25 2.0 25 2.0 10 5.0

75 15 5.0 25 3.0 33 2.27 15 5.0

100 15 6.67 25 4.0 33 3.33 20 5.0

150 25 6.0 30 5.0 50 3.0 30 5.0

200 35 5.71 40 5.0 100 2.0 40 5.0

250 45 5.56 50 5.0 125 2.0 50 5.0
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To develop such a model, we need a discriminant.

In the case of symmetric distributions, three discrimin-

ants based on tail length have been used: kurtosis, Hogg's

Q statistic, and percentile ratios. Applications of the

discriminants in parametric estimation problem can be

found in Andrews, et al., Daniels, Harter, et al., Hogg,

McNeese, and Moore, to name only a few (Refs 5, 17, 34, 38,

55, 60). For our purposes, we do not wish to restrict our-

selves to modeling only symmetric populations. Both

kurtosis and Hogg's Q statistic are not compatible with the

asymmetric case. They tend to average the measures of both

upper and lower tail length. However, it is possible to

use percentile ratios as a discriminant for each tail

individually. Thus, we can, heuristically at least,

envision a model which could adequately portray a lepto-

kurtic tail on one end and a platykurtic tail on the other.

Percentile Ratios. Let F be a continuous distribu-

tion function. Now define the lower and upper percentile

ratios, PL and PU as follows:

F- (.5) - F- (.025)
FL -- 1 1
F (.5) - F- (.25)

F 1(.975) - F - (.5)

FU 1 (.975) - F-I(.75)
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By construction PL and PU are greater than or equal to

unity. Table 111.6 lists the lower and upper percentile

ratios for some common distributions.

The next step was to examine the distributions

of the percentile ratios themselves. We approximated these

distributions by our nonparametric models. Monte Carlo

samples of size 20, 50, 100, 175, 250, and 500 were drawn

from each of the three GEP test distributions. The lower

percentile ratio was then calculated. The process was

repeated 100 times to get 100 values of PL for each sample

size and test distribution. This is equivalent to 100

values of PU since the random samples were drawn from

symmetric populations. We then used our nonparametric

models to generate approximate distribution functions for

PL (or PU) at each test distribution and sample size.

Model 1 was used for the distribution of the percentile

ratios computed from uniform and double exponential random

samples. Model 2 was used for the distribution computed

from normal random samples. Selection of these models was

based on both graphical characteristics and the sample

percentile ratios. At this point we imposed two constraints.

First, since Model 3 tended to perform poorly if the true

distribution was not uniform, we shall only use Model 3

when the sample strongly suggests a shape resembling the

uniform. Let SPR be the sample percentile ratio, either

lower or upper, and let PR1 and PR2 be the values of the
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TABLE 111.6

POPULATION PERCENTILE RATIOS

Percentile Ratios

Distribution Lower Upper

Normal 2.904 2.904

Uniform 1.900 1.900

Double Exponential 4.322 4.322

Triangular 2.651 2.651

Cauchy 12.706 12.706

Exponential 1.647 4.322

Weibull (2) 2.274 3.155

Weibull (3) 2.630 2.870

Beta (1, 2) 1.764 2.651

Beta ( , ) 1.409 1.409

Largest Extreme Value 2.410 3.764

Shape parameters are given in parentheses. Tri-
angular distribution has support [-2,2] Beta distribution
has support [0,1]. All other distributions have been
standardized with location parameter zero and scale
parameter one.
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percentile ratio where the adaptive procedure switches

models. We set P(SPR < PR1 j uniform distribution) = .5.

Second, since both Models 1 and 2 perform reasonably well

for both the double exponential and the normal distribu-

tions, set P(SPR < PR2 1 double exponential distribution)

P(SPR > PR2 I normal distribution). Thus, we equate the

probabilities of an incorrect choice. Based on these two

constraints and our nonparametric distribution functions,

we solved for PR1 and PR2 across all sample sizes con-

sidered. Values derived were PR =1.9 and PR 2=3 .5.

Table III.7 lists the approximate probabilities for the

sample ) w percentile ratio falling in any of the three

intervals dZefined by PR1 and PR2 for the three underlying

distributions and various sample sizes.

The construction of our nonparametric estimators

allows the use of only one model for each sample con-

sidered. Having two different percentile ratios creates

an ambiguity as to which model to finally choose. We

resolved this dichotomy in two ways. First, Model 1

seemed to perform better when the underlying population was

normal than Model 2 performed if the underlying population

was double exponential. So, we chose Model 1 if both

Models 1 and 2 are indicated. Actually, it turns out that

the model number is its relative order of precedence.

Second, we discovered that the uniform distribution could

also be approximated well by using either Models 1 or 2 and
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TABLE 111.7

SELECTED PROBABILITIES--LOWER PERCENTILE RATIO (PL)

Sample UNIFORM DISTRIBUTION
Size P(PL<.9) P(l.9<PL<3.5) P(PL>3.5)

20 .4326 .5025 .0649

50 .5178 .4738 .0084

100 .5541 .4428 .0031

175 .5085 .4915 0

250 .5544 .4456 0

500 .4881 .5119 0

Sample NORMAL DISTRIBUTION
Size P(PL<l.9) P(i.9<PL<3.5) P(PL>3.5)

20 .0994 .5711 .3295

50 .0354 .7273 .2373

100 .0350 .7992 .1658

175 .0080 .8753 .1167

250 .0068 .9295 .0637

500 0 .9658 .0342

Sample DOUBLE EXPONENTIAL DISTRIBUTION
Size P(PL<1.9) P(I.9<PL<3.5) P(PL>3.5)

20 .0592 .2715 .6693

50 .0231 .1851 .7918

100 .0026 .1594 .8380

175 .0012 .1222 .8766

250 .0013 .0972 .9015

500 0 .0375 .9625
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forcing the extrapolated points for each subsample to be

constants. These points are based on extrapolation from

the entire sample.

From the previous three models and the fixed

extrapolation point modification, Models 4 and 5 were

developed. Model 4 uses the first three models depending

on the values of the sample percentile ratios. Model 5

uses only Models 1 and 3.

In analyzing the relationship of k, the number of

subsamples, and n, the sample size, it was evident from a

graphical standpoint that the ratio of k/n determined how

much detail the approximation possessed. So a choice of

a nominal ratio of k/n seemed appealing. Since Models 1

and 2 performed reasonably well for double exponential and

normal random samples, we postulated another model which

is a compromise between the two in the sense of the k/n

ratio. We chose the simple expression:

Sn+4 n<250k =5 -

50 n>250

Thus, for samples of size 250 or less, each subsample con-

tains either 4 or 5 data points. Like Model 2, we kept

the number of inversions at one. Denote this new model

as Model 2* since, with the exception of the new choice

of k, it uses the same variables as Model 2. An adaptive
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procedure, Model 6, was based on Models 2* and 3. A sum-

mary of all three adaptive models is given in Table 111.8.

Summary

This chapter has traced the derivation of a non-

parametric, continuous, differentiable, sample distribu-

tion function. First, we considered a simple scheme to

extend plotting positions to a continuous, differentiable

function. Then, we improved on our distribution and den-

sity estimators by the use of averaging functions based on

subsamples, similar to the jackknife. Next we investi-

gated the properties of uniform convergence and of distri-

bution functions as they apply to our new estimators.

Theorem 3.6 concludes the uniform convergence arguments.

A smoothing routine, which again preserves the distribu-

tion function properties, was introduced. Next, a detailed

analysis of stylized and random samples from representative

members of the Generalized Exponential Power distribution

resulted in selection of three initial nonparametric

models. With the addition of the percentile ratios as

discriminants of tail length, three adaptive models were

then defined. Having completed the theoretical develop-

ment of our six chosen models, our next goal is an evalua-

tion and comparison of these techniques as estimators.
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TABLE 111.8

DECISION RULES FOR ADAPTIVE MODELS

Percentile Ratios

Lower Upper Model 4

[1.0,1.9) [1.0,1.9) Model 3

[1.0,1.9) [1.9,3.5] Model 2--fixed X(0)

[1.0,1.9) (3,5,) Model 1--fixed X(0 )

[1.9,3.51 [1.0,1.9) Model 2--fixed X n+l1
[1.9,3.51 [1.9,3.5] Model 2

[1.9,3.51 (3.5,-) Model 1
(3.5,) [1.0,1.9) Model 1--fixed X n+l)

(3.5,-) [1.9,3.5] Model 1

(3.5,-) (3.5,-) Model 1

Percentile Ratios

Lower Upper Model 5

[1.0,1.9) [1.0,1.9) Model 3

[1.0,1.9) [1.9,1) Model 1--fixed X()

(1.9,') [1.0,1.9) Model 1--fixed X

(1.9,) (1.9,co) Model 1

Percentile Ratios

Lower Upper Model 6

[1.0,1.9) [1.0,1.9) Model 3

[1.0,1.9) [1.9,co) Model 2*--fixed X(0)

(1.9,') [1.0,1.9) Model 2*--fixed X n+l )

(1.9,) (1.9,0) Model 2*
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IV. Distribution and Density Function Estimation

Introduction

Having constructed six nonparametric models, we

now propose to evaluate their performance and demonstrate

their feasibility. We begin by surveying several other

authors' estimates of the distribution function, both con-

tinuous estimates and step functions. Estimates of the

density function are then examined. These include kernel

estimates, orthogonal series estimates, delta sequences and

a more recent entropy based estimate. The new nonparametric

estimators are then compared on the basis of mean integrated

square error of both density and distribution functions.

Tables are given which list the results of Monte Carlo

comparisons of the models over six distributions and six

sample sizes. The results were compared with two other

continuous density approximations. Convergence rates fo-

the estimators are also approximated. Next some specific

examples of the models are shown plotted for five differ-

ent distributions. Finally the hazard function is esti-

mated and plotted. As a tool, the hazard function, coupled

with the density and distribution functions form a power-

ful discriminant of density types.
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Historical Survey

Distribution Function Estimation. We have already

examined some estimates of distribution functions in our

discussion of sample distribution functions in Chapter II.

Some were rather general, like Vogt's variant of the

empirical distribution function, while others, like

Schuster's, were concerned with reflecting points about

the estimated location parameter of a symmetric distribu-

tion. The references in Chapter II describe rather simple

step function approaches to estimating the distribution

function.

Several other methods also merit discussion. While

his estimate is still a step function, Turnbull deveioped

an algorithm to calculate the maximum likelihood estimate

F of an underlying distribution function F. He shows

monotonic convergence of his algorithm to F and indicates

an application to hypothesis testing, while considering

data sets which are arbitrarily grouped, censored or trun-

cated (Ref 97). For an average squared error loss func-

tion, Phadia showed that a step function estimator F(t)

is minimax.

1 1 n
F(t) = 2(m+l) + m(m+l) i X

where m = n and 6X is a measure on R1 which assigns a
1

unit mass to X. He further derived step function estimators
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which are best invariant and also best invariant confidence

bands (Ref 67).

Continuous functions have also been developed.

Smaga derives a smooth empirical distribution function in

a manner similar to kernel estimates for a probability

density (Ref 86). Orthogonal series estimators, based on

trigonometric functions proposed by Kronmal and Tarter

give a continuous approximation for the distribution func-

tion. Their Fourier series method produced impressive

mean integrated square error values. A significant draw-

back to the method is the lack of distribution function

properties of these estimators (Ref s 40, 48).

While we are primarily concerned with nonpara-

metric estimation, some rather general three or four

parameter families of distributions can be used to approxi-

mate a distribution function. Recently, one such four

parameter family was introduced by Ramberg, et al. Based

on a generalization of Tukey's lambda function, this new

distribution approximates a wide range of both symmetric

and asymmetric populations (Ref 72).

In addition to the estimating methods presented

both in this chapter and in Chapter II, the approaches to

density estimation given in the next section provide the

opportunity for further distribution function estimation.

As we have seen, some authors attack the general problem

of data modeling by investigating the distribution function.
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We now consider those who chose a path of density function

estimation.

Density Function Estimation. Oldest among the

density function estimates is the histogram. Given a set

of class intervals, the histogram is a maximum likelihood

estimator. This dependence on internal selection, however,

is a serious drawback. While the method of maximum likeli-

hood has been a classical technique, recently the minimum

distance method developed by Wolfowitz has inspired numer-

ous articles, particularly in the sense of parametric

estimation (Ref 108). Reiss proposes minimum distance

estimators of unimodal densities. He proves consistency

and gives a computational algorithm. Using the empirical

distribution function and the Kolmogorov-Smirnov distance

measures, Reiss' estimators are defined as constants

between ordered sample data points. As such, the esti-

mators are actually minimum distance histograms (Ref 74).

Since 1956, some significant continuous approxi-

mations have emerged. Much of the literature has been

devoted to kernel estimators, first developed by Rosenblatt

(Ref 75). Most of the important results are summarized in

a recent book by Tapia and Thompson (Ref 94). Wegman and

Davies discuss two recursive estimators closely related to

kernel estimators. They also propose a sequential estima-

tion procedure based on the recursive estimators (Ref106).
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Singh evaluates the mean square errors of a density esti-

mator of the kernel type and its derivatives (Ref 85).

Some further properties of kernel estimators are proposed

by Schuster (Ref 81). Fourier inversion method of density

estimation is proposed by Blum and Susarla. They show this

estimator possesses mean square consistency and asymptotic

normality (Ref 8).

Various estimation techniques based on orthogonal

series expansions have also been developed. Kronmal and

Tarter proposed estimators of both distribution and density

functions using Fourier series. Expressions for the mean

integrated square error are developed in terms of the vari-

ances of the Fourier coefficients. Both Schwartz and

Walter evaluate the properties of a density estimator based

on Hermite functions which are defined in terms of Hermite

polynomials (Refs 84, 100). Watson proposes another ortho-

gonal series estimator (Ref 102). Crain uses the set of

normalized Legendre polynomials on [-1,1] as his orthogonal

set. He incorporates both a restricted maximum likelihood

approach and the information-theoretic distance defined by

Kullback (Ref 14).

Watson and Ledbetter defined a density estimator

as an average of square integrable functions. Expressions

for these functions are derived based on a mean integrated

square error criterion (Ref 103). Walter and Blum general-

ized many of the previously mentioned methods into one

method based on "delta sequences," sequences of functions
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which converge to ageneralized function 6. This delta

sequence method includes kernel estimators, orthogonal

series estimators, Fourier transform estimators and histo-

grams (Ref 101). Convergence rates are also generalized

from the results of Wahba (Ref 99).

Parzen has attempted to incorporate both para-

metric and nonparametric schemes in an approach to data

modeling. He also introduces density quantile functions

and a method of autoregressive density estimation (Ref 65).

Entropy approaches have also been suggested to

estimate probability densities. MacQueen and Marschak

discuss the rationale for using a maximum entropy approach

to estimate Bayesian prior distributions (Ref 52). Miller,

using the maximum entropy formalism given by Tribus

(Ref 95), approximates a density function as a member of

the exponential family of distributions, F. Miller's

approximations are shown to be within computational accu-

racy when the underlying distribution is a member of F and

accurate average values of the "information functions" are

available (Ref 57).

Estimator Comparisons

Having examined previous distribution and density

function estimators, we now wish to evaluate the new non-

parametric estimators proposed in Chapter III. We begin

by examining the criteria for comparison. Next we discuss
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the mechanics of the Monte Carlo study. Finally, we shall

present the results and conclusions of the comparisons.

Criteria. To derive the various variables which

make up our models, we previously used a modified CVM

integral criterion. Here we will use this same criterion

to evaluate the estimators. As mentioned in Appendix 1,

this modified Cramer von Mises integral approximates the

average square error and mean integrated square error

(MISE) with weight function f.

If we restrict ourselves to the family of con-

tinuous distribution functions, F, which can be parameter-

ized by location and scale parameters, we can show by con-

struction that SF(x) belongs to F. Further, with respect

to the distribution functions as the arguments, the modi-

fied KS integral, modified CVM integral and modified

Anderson-Darling (AD) integral are all location and scale

invariant. When the density functions are used in the argu-

ments of these integrals, location invariance is preserved,

but scale invariance is not. For example, let X be a

random variable from a standard normal distribution. Now

let Y = X/a. Choose a random sample {Xi } i=l,...,n and

form fYi} i=l,...,n. Now let SFx (X) and sfx(x) be the

nonparametric approximations based on the sample {Xi }

i=l,...,n, and similarly for Y. Then

f(fy(y)-sfy(y)) o2 F () a2  f (X)-SfxX()) 2 dSFx(X).
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Given the modified CVM integral value for a standardized

distribution, we can compute the integral for another

random variable with a different scale factor but the same

distribution type.

Monte Carlo Mechanics. With our criteria defined

we now generated random samples via the methods discussed

in Appendix 3. Twenty-five samples of sizes 20, 50, 100,

175, 250 and 500 were drawn from each underlying distribu-

tion. These distributions included the double exponential,

normal, uniform, triangular, Cauchy, and exponential. To

keep a consistent comparison with other published results,

the uniform and triangular distributions were defined on

[0,11. All other distribution functions had a zero loca-

tion parameter and unit scale parameter. Each random

sample was compared with nonparametric models 1 through 6.

Values for both the MISE of the distribution function and

density function were approximated by averaging the twenty-

five modified CVM integrals. A standard error of each

estimate was also calculated. As a numerical check, the

average square errors were also calculated and were in

close agreement with the modified CVM criterion.

Results. Tables IV.1 through IV.8 summarize the

main results of the Monte Carlo study. Although a small

Monte Carlo sample size was used, relative comparisons

among the nonparametric models developed here can be made.
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The same random samples were used to calculate the modi-

fied CVM integrals for each model. Tables which give

approximate MISE also include the standard error of the

estimate beneath each entry to give a measure of the Monte

Carlo accuracy.

Table IV.I shows a comparison among all six models

using the approximate MISE of the distribution function

for sample size 100. The last column lists the mean of

the asymptotic distribution of the Cramer von Mises sta-

tistic, W 2 , normalized by the sample size (Ref 4 ). This

value is the MISE of the distribution function when the

empirical distribution function is used as the estimator.

Note that in all cases except for the Cauchy distribution,

Models 1, 2 and the three adaptive models outperform the

empirical distribution function in terms of MISE. Given

an underlying uniform distribution, Model 3 is the clear

choice. However, its poor performance for other distribu-

tions results from the fixed plotting positions based on

the entire sample. The excellent performance of the

adaptive models for the distributions considered is

especially encouraging. These results indicate that, on

the average, our nonparametric models are closer to the

true distribution function than the empirical distribution

function under the criterion of mean integrated square

error.
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For the density functions, a direct comparison of

our models with the estimators evaluated by Wegman was

made. We chose only to repeat the two continuous density

estimators tested, the naive estimator based on a uniform

kernel and the trigonometric estimator of Kronmal and

Tarter. For average square error values of histogram

estimators, refer to Wegman (Ref 105). Table IV.2 gives

the approximate MISE values for the density estimators.

Note the competitive performance of our models of the

density functions. No one estimator is clearly superior.

Again the performance of the adaptive models is encouraging.

Remember that the motivation for the development

of this new nonparametric family of estimators was based

on modeling the distribution functions. The density esti-

mators are merely analytic derivatives of these distribu-

tion functions. Since differentiation is an unbounded

linear operator, one would suspect a large discrepancy

between a differentiated estimate and one specifically

designed to model the density function itself. The com-

parable performance of these new models against pure

density estimators demonstrates their versatility.

It should also be noted that the trigonometric

estimator introduced negative density values in samples

from the normal, Cauchy and exponential distributions.

Although the trigonometric density estimates do integrate

to unity over their finite support, usually the interval
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[X( IX (n) ] , their utility is diminished by the negative

values. Conversely, both the kernel estimator, when the

kernel itself is chosen as a density function, and all of

the new nonparametric models do possess all the properties

of distribution functions.

The addition of the exponential distribution as an

asymmetric example is significant. The performance of the

adaptive models for both the distribution function and

density function indicate that the new nonparametric

approach also performs well over a very general class of

probability distributions.

A further comparison of the density estimators

was made for various sample sizes using the triangular

distribution. Table IV.3 lists the values of the approxi-

mate MISE and the standard errors. The competitive nature

of the new models, particularly the adaptive ones, is

again evident. Tables IV.4 through IV.7 show the per-

formance of Models 5 and 6 for various sample sizes and

distributions. Both the MISEs for the distribution func-

tion and the density function are compared. Tables IV.4

and IV.6 include the mean of the asymptotic distribution

of the normalized CVM statistic as a reference. These

two models are significant in that they will form the

bases for goodness of fit tests proposed in the next

chapter.
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Based on the calculated criterion values, we

derived empirical convergence rates for five of the models.

Normalized to criterion values at sample size 50,

Table IV.8 compares the empirical rates to convergence

rates of order n - 5 , n - 8 , and n - . The distribution
-i

function models appear to converge at a rate near n .

This empirical result indicates that the smoothing process

introduced in Chapter III does not appreciably affect the

convergence of the estimators. Recall that the unsmoothed

estimators displayed uniform convergence. Now, we have

empirical evidence of the convergence of our distribution

function models. The density function estimates appear

to converge at a rate between n and n 8 . This rate

is not as rapid as the theoretical convergence rate of the

kernel estimate given by Rosenblatt or the approximate

convergence rate for the trigonometric estimate given by

Wegman (Refs 75 and 105). However, we have demonstrated

empirical convergence of our density estimators, a property

not analytically verifiable due to the differentiation

operation. While the convergence rates appear somewhat

slower, the previous tables show that the actual criterion

values of our model estimators are very close to the

methods currently available. Further, the use of nonpara-

metric estimates for very large samples is a questionable

procedure. Large samples are ideally suited to a para-

metric approach, since the amount of information available
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should provide model discrimination. Thus, all of the

results of this analysis supports the use of the new non-

parametric models for small and intermediate sample sizes.

The results of investigations of samples of size 20 indi-

cate that the strength of these models may lie in small

sample analysis.

Graphical Comparisons

Much of the impetus for this research resulted

from the ability to analyze many different random samples

graphically. For criteria such as MISE, the accuracy of

the approximations becomes obscured when dealing with such

small quantities, at least for this author. MISE is also

an average error, so a graphical approach may give more

insight as to the influence that various portions of the

density have on the mean value. For example, a graphical

analysis showed that while the MISE of the density function

for the exponential distribution using Model 3 was far

superior, the poor estimation of tail values resulted in

an extremely poor distribution function MISE. This observa-

tion calls to question the widely accepted use of MISE

as a density function estimation criterion. Relying solely

on MISE for the density function allows very poor esti-

mators to appear quite good. Throughout this study, we

have contended that density estimators should be compared

with respect to criteria evaluation at their corresponding
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distribution functions as well as at the density function.

A graphical examination is a simple way to expose these

ill-conceived estimators.

To demonstrate the versatility of the new non-

parametric estimators, we chose random samples of size 100

from the double exponential, uniform, triangular, Cauchy,

and exponential distributions. The nonparametric model

used in each case is the one with the smallest approximate

MISE listed in Table IV.A. Figures 4.1 through 4.10

present the distribution function and density function

approximations plotted against the true underlying pro-

cesses. Table IV.9 lists the values of the approximate

MISEs for the distribution and density functions for each

random sample. Many other samples and distribution func-

tions have been examined for different sample sizes. Other

probability distributions analyzed included various beta

distributions, including U shapes, Weibull distributions,

gamma distributions, and extreme value distributions.

Hazard Function Estimation

The availability of a continuous density function

estimator derived from a continuous, diffetentiable dis-

tribution function estimator automatically allows one to

calculate a continuous hazard function estimator. The

hazard function, defined by h(x)=f(x)/(l-F(x)), can be a

powerful density function discriminant and is used
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TABLE IV.9

APPROXIMATE MISE--RANDOM SAMPLES--SAMPLE SIZE 100

MISE

Distribution Density
Distribution Function Function

Double Exponential .00044 .00352

Uniform .00054 .00125
(.01500)(l)

Triangular .00170 .00150 (1)
(.02403)(l)

Cauchy .00331 .00058

Exponential .00031 .00786

Note 1: Density function MISE normalized to the
interval [0,1].

extensively in reliability engineering and life testing.

Early research in hazard analysis was done by Watson and

Ledbetter, which prompted their later investigation of

density estimation (Ref 103). An empirical approach to

hazard function estimation can take the form of estimating

the hazard function at the sample data points and fitting

some least squares curve through the calculated points

(Ref 44). Because of the necessity of using a differencing

scheme to construct the density function estimate, the cal-

culated hazard point estimates have magnified errors. The

use of a continuous density approximation has a clear

advantage.
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Using the same models as the CDF and PDF plots,

we constructed the hazard function estimates for the random

samples plotted in the last section. Figures 4.11 through

4.15 show the estimators plotted versus the true popula-

tion hazard function. The functions are only plotted

between the first and last order statistic. Note the

unique shape of each hazard function and the ability of

the nonparametric estimator to follow the shape.

Armed with only the new nonparametric estimators

and graphs of various distribution, density, and hazard

functions, we now have a powerful tool for identifying

the underlying distribution of the population from which

a random sample is drawn.

Summary

We began our investigation into the utility of

our new nonparametric estimators by surveying the litera-

ture for other distribution and density estimators. A

Monte Carlo study was then described in which the new

models were compared with established estimation schemes.

The new estimators were very competitive in the mean

integrated square error sense. Tables were developed

showing the approximate MISE and standard error of the

estimate. Based on these values, empirical convergence

rates were indicated. We next discussed a graphical com-

parison of various random samples from five different
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distributions. We concluded with the development of an

approximation to the hazard function, illustrated the

hazard estimator for the five distributions, and argued

for the simultaneous use of distribution, density, and

hazard function graphs in solving problems in model dis-

crimination.

We have demonstrated that our models are extremely

competitive and closely approximate the true distribution

function and density function. Their use as a population

discriminant will be considered next in the development

and evaluation of goodness of fit tests based on the new

nonparametric estimators.
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V. Goodness of Fit Tests

Introduction

Since the last chapter indicated that our models

approximated the true underlying distribution with competi-

tive precision, we will now use them as a basis for goodness

of fit tests. We begin our discussion by a brief his-

torical survey of goodness of fit tests. Next we intro-

duce eight new test statistics based on two of the adap-

tive models and a sample distribution step function

related to the median ranks. Then, we give the critical

values of tests for the normal and extreme value distribu-

tion for both a completely specified null distribution and

a null distribution whose parameters are estimated.

Finally we present the results of power studies for both

tests. Powers are also compared with some previously pub-

lished methods.

Historical Survey

Goodness of fit test literature has not suffered

from lack of attention. In our discussion, we are con-

cerned with the goodness of fit problem in the context of

life testing. Two important distributions used in life

testing are the normal and the extreme value.
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Forming the basis for goodness of fit tests is the

selection of a test statistic. An excellent survey of dis-

tribution free statistics is given by Sahler (Ref 78).

Consider now, some of the tests based in the statistics

for the case of a completely specified null hypothesis.

References in Sahler's survey give much of the historical

background.

To avoid using extensive tables, Stephens proposed

co-mputational approximations for critical values of eleven

common test statistics (Ref 88). Schuster uses a modified

empirical distribution function to develop a test based

on the Kolmogorov Smirnov statistic (Ref 82). Saniga and

Miles evaluate some standard tests of normality against

an alternative distribution which is a member of the

asymmetric stable probability distribution family (Ref 80).

Tests of symmetry have been proposed using the Cramer

von Mises statistic and modified empirical distribution

functions by Rothman and Woodroofe and Hill and Rao

(Refs 36, 76). For the Weibull distribution, or equi-

valently the extreme distribution value, Smith and Bain

propose a goodness of fit test based on the correlation

coefficient and evaluate both complete and censored samples

in both the completely specified and composite hypothesis

cases (Ref 87). Foutz attempts a more general approach

to goodness of fit testing by using an empirical proba-

bility measure as a basis rather than the empirical
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distribution function (Ref 25). A novel approach of

Dudwicz and van der Meulen uses entropy as the basis for

a test of uniformity (Ref 20). Extensions to other dis-

tributions have not been published as yet.

While the aforementioned tests all use a completely

specified null hypothesis, the work of David and Johnson

shows that goodness of fit tests are independent of the

true parameter values when invariant location and scale

estimates are substituted and the test depends on the

probability integral transform (Ref 18). This result

opened the door for composite null hypothesis tests which

estimate the parameters of the distribution by invariant

estimators. Lilliefors pioneered the investigations of

this type of developing tables for the KS statistic

(Ref 50). Stephens conducted tests for uniformity, nor-

mality and exponentiality using modifications of the KS,

CVM, AD, Kuiper and Watson statistics when the parameters

were estimated (Ref 89). Green and Hegazy modify the KS,

CVM, and AD tests by using other sample distribution func-

tions as a basis for the test statistics. Their results

show improvements in powers are possible when new sample

distribution functions are used (Ref 29). Durbin proposes

a generalized KS test when parameters are estimated and

applies the result to tests of exponentiality and spacings

(Ref 21). Durbin's results were based in part on the

investigation of spacings done by Pyke (Ref 69). Pyke's
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work also motivated Mann, Scheuer and Fertig's development

of two new statistics, L and S. They proposed tests based

on these statistics for the two parameter Weibull or

extreme values distribution (Ref 53). Littell, McClave,

and Offen conducted power studies using the S statistic

as well as four others for these same distributions

(Ref 51). Stephens, following methods developed pre-

viously, computed critical values of modified CVM, AD and

Watson statistics for tests of the extreme value distribu-

tion (Ref 90) . A recent paper by Mihalko and Moore shows

an application of a chi square test goodness of fit test

to the two parameter Weibull when the parameters are esti-

mated (Ref 56).

Test Procedures

The classical goodness of fit test can be stated

as follows: from an observed random sample, Xl,...,Xn ,

test whether the sample comes from a population with dis-

tribution function F(x). Standard tests using EDF or

modified EDF statistics are based on comparisons between

F(x) and some sample distribution function. As we have

generated new continuous, differentiable, sample distribu-

tion functions, we follow a similar approach to define our

goodness of fit tests. Because of their outstanding per-

formance using a mean integrated square error criterion
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over a wide range of distributions, we chose Models 5 and 6

to form the bases for our new tests.

Null Distributions and Situations Considered. One

of the major applications of goodness of fit tests is in

the area of life testing. For this reason, we chose two

important and widely used failure distribution models, the

normal and the extreme value distributions, for our null

hypotheses.

The extreme value distribution considered in this

entire analysis is the distribution of the largest value,

whose cumulative distribution function is given by:

F(x) = exp[-exp {- (-)1I

where --<x< , -<6<C0, a>O

Two specific hypotheses situations will also be

considered. The first is the classical case of the null

distribution, F(x), having all of its parameters com-

pletely specified. The second situation, and probably

the more common one for the applied statistician, is the

case where the functional form of the null distribution is

hypothesized, but the parameters are estimated. Although

both the normal and extreme value distributions are members

of a two parameter family, we chose not to examine the

situation where only one parameter is estimated and the

other specified. We believe that the two situations
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considered here comprise the vast majority of cases encoun-

tered in actual practice.

The estimators used in the case of the normal dis-

tribution will be the uniformly minimum variance unbiased

estimates, X and S. For the extreme value we will employ

a Newton Raphson iteration technique to calculate the

maximum likelihood estimators of the location and scale

parameters.

Test Statistics. Eight new test statistics are

proposed. The first set of these statistics is based on

Models 5 and 6 and the modified distance measures listed

in Appendix 1. Given the random sample, X I,...Xnf let

SF(x) be based on Model 5. Now define

D5 = max IF(X i) - SF(X i )I
i

W5 = nf (SF(x)-F(x)) 2 dSF(x)

A5 = nf (SF(x)-F(x))2[SF(x) (I-SF(x))] dSF(x)

Calculating SF(x) using Model 6 gives similar definitions

for D6, W6, and A6. These first six test statistics are

modifications of the classical KS, CVM and AD statistics.

Along the lines of the tests proposed by Green and

Hegazy, we also propose two new test statistics based on

a sample distribution step function (Ref 29). We wanted to
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use the median ranks in both a KS and CVM statistic,

since, as plotting positions, they describe measures of

central tendency for the mostly skewed rank distributions.

The aim was to get the squared term in the summation for

the CVM statistic to contain the difference between the

hypothesized distribution function at that point and the

median rank value. Working backwards, one sample dis-

tribution that will suffice is F (x), where

.2 /(n+.4) x<X

(i) (i+F() (i+. 2) /(n+.4) X i)<x<X 1i~) i=l, . .. ,-
F n(x) = I

n (n+.2)/(n+.4) x>X(n )

(i-.3) / (n+.4) x=X i=l,...,n (5.1)
(i)

Note that F (X.) is the midpoint of the jump from
- n i

F (X. ) to F (X ).

We now define two new statistics based on this

Fn (X)

DMR = maxI F(X) i-.3
i in+.4

n 2  n n X -i3 2
and WM = 1(+43 + - Z((

12(n+.4) n+.4 i=l n+.4

Critical Values. Given the two distributions and

two situations for the null hypothesis and the eight new

goodness of fit statistics, we now generated critical

values for each test statistic by the following method.
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For fixed sample sizes of 10(10)50 we generated n ordered

random variates from the null distribution (see Appendix 5

for a further discussion of random variate generation).

We next calculated the approximate parameter estimates

from the random sample. Finally, we calculated each of

the eight new test statistics for this sample. The pro-

cedure was repeated 1000 times and values for each test

statistic were ordered. Percentiles corresponding to alpha

levels of .20, .15, .10, .05, .025, and .01 were deter-

mined. The entire process was then repeated five times

and the critical values for each test statistic, at each

sample size and alpha level were calculated by averaging

the five corresponding percentiles. Appendix 3 gives the

tables for the critical values for the normal and extreme

value distributions, both when the null distribution is

completely specified and when the parameters are estimated.

Values are listed for five different sample sizes and six

different alpha levels.

Tables V.1 and V.2 show the critical values across

sample sizes and compares the eight new test statistic

values with the classical values for the KS, CVM and AD

statistics for a completely specified null hypothesis.

Note the smaller values of the critical values for the new

statistics (except A5 and A6 for sample size < 30). This

observation strengthens the claim made earlier that our

new nonparametric model "better" approximates the true

113



TABLE V.1

COMPARISON OF CRITICAL VALUES FOR THE NORMAL
DISTRIBUTION AT THE 5-PERCENT ALPHA LEVEL(1)

Sample Size

Statistic 10 20 30 40 50

D ( 2 )  .4094 .2941 .2418 .2102 .1884

D5 .3147 .2160 .1738 .1511 .1323

D6 .3108 .2228 .1765 .1543 .1349

DMR .3509 .2687 .2211 .1963 .1748

w2 (2) .5411 .5026 .4890 .4822 .4780

W5 .4513 .4267 .4067 .4101 .3998

W6 .4243 .4271 .4068 .4137 .4070

WMR .4258 .4550 .4365 .4610 .4510

A2 (2) 2.492 2.492 2.492 2.492 2.492

A5 4.416 2.907 2.556 2.367 2.175

A6 4.013 2.837 2.563 2.388 2.218

Note 1: Null distribution is completely specified.

Note 2: Critical values calculated from formulae
given by Stephens (Ref 89).
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TABLE V.2

COMPARISON OF CRITICAL VALUES FOR THE EXTREME VALUE
DISTRIBUTION AT THE 5-PERCENT ALPHA LEVEL 1 )

Sample Size

Statistic 10 20 30 40 50

D ( 2 )  .4094 .2941 .2418 .2102 .1884

D5 .3256 .2183 .1751 .1531 .1363

D6 .3205 .2111 .1764 .1542 .1376

DMR .3536 .2661 .2221 .1953 .1769

W .5411 .5026 .4890 .4822 .4780

W5 .4802 .4530 .4213 .4171 .4239

W6 .4444 .4363 .4128 .4152 .4242

WMR .4284 .4491 .4317 .4473 .4537

A2 (2) 2.492 2.492 2.492 2.492 2.492

A5 4.516 3.111 2.587 2.398 2.345

A6 4.104 3.014 2.572 2.367 2.343

Note 1: Null distribution is completely specified.

Note 2: Critical values calculated from formulae
given by Stephens (Ref 89).
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distribution than the EDF. "Better" is now in terms of

KS, CVM and AD distance measures. Since each criterion

for closeness of the true and approximated functions mea-

sures different qualities of the approximation, our dis-

tribution and density approximations of the last chapter

gain more credibility.

While small critical values do indicate a high

quality approximation, the real performance of a goodness

of fit test is measured by its power.

Power Comparisons

Once the critical values were determined, we next

evaluated the power of our new tests using various alterna-

tive distributions. Our first concern was the verification

of our critical values )or both distributions over all

cases considered. Monte Carlo samples of size 1000 for the

normal distribution and 2000 for the extreme value distribu-

tion were generated for each random sample size of 10(10)50.

Tables V.3 and V.4 show the results of the critical value

verifications at sample size 20 with the parameters of the

null distributions estimated. All of the results indi-

cated a good agreement between the alpha level and the

power of the test using random samples generated by the

null distribution. Thus, the critical values were

empirically confirmed.
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TABLE V.3

CRITICAL VALUE VERIFICATION FOR THE NORMAL
DISTRIBUTION AT SAMPLE SIZE 20

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 201 156 105 53 26 14

D6 195 147 94 51 25 13

DMR 199 151 106 46 23 9

W5 202 156 102 52 24 14

W6 189 150 101 56 23 10

WMR 185 143 91 49 27 14

A5 201 155 108 51 24 14

A6 209 157 107 52 27 15

Entries represent the number of samples signifi-
cant at the given alpha level for each test statistic
calculated over a Monte Carlo sample of size 1000. The
parameters of the null distribution were estimated.
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TABLE V.4

CRITICAL VALUE VERIFICATION FOR THE EXTREME VALUE
DISTRIBUTION AT SAMPLE SIZE 20

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 410 308 201 85 41 12

D6 395 282 188 94 35 10

DMR 410 328 228 11 52 15

W5 405 305 204 87 42 14

W6 399 310 202 89 43 10

WMR 389 296 209 107 51 13

A5 401 303 192 89 42 22

A6 405 311 192 92 42 15

Entries represent the number of samples signifi-
cant at the given alpha level for each test statistic
calculated over a Monte Carlo sample of size 2000. The
parameters of the null distribution were estimated.
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The general method followed in the power studies

was to generate 1000 sets of random samples of size

10(10)50 for each alternative distribution. Then, the

eight test statistics were calculated for each sample.

The number of samples, for each sample size, which had test

statistics that exceeded the critical values, was recorded.

For a given alternate distribution, situation type, sample

size, alpha level, and test statistic, the power of the

test is the number of samples significant divided by 1000,

the Monte Carlo size. Appendix 4 gives the results of

some of the power studies for both null distributions, the

normal and extreme value. The cases evaluated but not

tabled include all of the results for alpha levels .20,

.15, and .025. Several alternative distributions were not

included in the tables but are discussed later in this

chapter when each null distribution is examined. However,

the tables do present the results for the most commonly

used alpha levels and alternative distributions which pro-

vide variety and a basis for future comparisons.

Because of the similarity between Models 5 and 6,

the correlation between the new test statistics should be

rather high. To gain some insight into the correlations

between all pairs of test statistics, over 1400 output

matrices similar to Table V.5 were constructed for each

null distribution, hypothesis situation, sample size, alpha

level, and each alternative distribution. Each cell of
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TABLE V.5

TYPICAL OUTPUT MATRIX OF POWER STUDIES

Null Distribution--Extreme Value, Parameters Estimated

Alternative Distribution--Normal

Sample Size--20

Alpha Level--.10

Statistic D5 D6 DMR W5 W6 WMR A5 A6

D5 490

D6 399 409

DMR 225 221 252

W5 468 391 221 491

W6 416 376 218 417 419

WMR 265 267 209 264 264 280

A5 435 375 214 446 402 258 471

A6 399 357 206 404 378 252 420 438

Entries represent the number of samples significant
by both row and column statistics using a Monte Carlo
sample of size 1000.
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the matrix contains the number of samples significant by

the corresponding row and column statistics. Diagonal

terms were used to construct the power tables in Appendix 4.

Normal Distribution. Tables A4.1 through A4.6

in Appendix 4 list the results of the power study conducted

for the normal distribution. We attempted to construct a

meaningful alternative distribution when the null distribu-

tion parameters were completely specified. Sometimes the

null distribution parameters were adjusted for simplicity.

Eleven alternative distributions were considered.

For the double exponential, uniform, and Cauchy

distributions, the location and scale parameters of the

null and alternative distributions were zero and one

respectively. For the exponential, gammas, and extreme

value, the null distribution was modified to have the same

mean and variance as the standard form of the alternative

distribution. For example, the exponential distribution

had a location parameter of zero and a scale parameter of

one, while the normal distribution as the null distribution

had location and scale parameters equal to one. The

lambda distributions had zero mean and unit variance as

did the corresponding normal as the null distribution.

See Ramberg, et al., for a discussion of the four parameter

lambda distribution (Ref 72).
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Table V.6 lists selected results of the power

study. Parameters for the null distribution have been

estimated and only the results for an alpha level of .05

are shown. The powers for the three lambda distributions

are included for comparison purposes. These three dis-

tributions are not included in the general tables of

Appendix 4. To facilitate comparisons of our results with

other published power studies, we included the classical

KS, CVM, and AD statistics (listed as D, W0 and A respec-

tively) as well as two modified EDF statistics D2 and A2 2 '

D2 is a summed KS distance between the hypothesized dis-

tribution and the EDF (summed over the data points). A2 2

is equal to n times the Anderson-Darling integral distance

listed in Appendix 1 after Hn (x) is substituted for SFx)

where

H n(x) = (i+ )/(n+l) X Wi)x<X(i+l) i=l,...,n

See reference 29 for a further discussion of these two

statistics. Note that these five test statistics used

for comparison had powers calculated using different random

samples than the ones used to calculate the powers for the

eight new test statistics.

Several observations deserve mention. First, the

tests based on Models 5 and 6 are superior in almost every

instance to the tests based on median ranks. Second, for

the gamma alternatives, it appears that D2 and A22 have a
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distinct advantage over the new tests. Again, however,

caution is advised since the underlying random samples

were different. Third, with the further exception of the

uniform, the new tests based on Models 5 and 6 have very

competitive powers.

Extreme Value Distribution. Tables A4.7 through

A4.12 in Appendix 4 list the results of the power study

conducted for the extreme value distribution. An attempt,

as in the normal power study, was made to construct mean-

ingful alternative distributions when the null distribution

parameters were completely specified. Twelve alternative

distributions were considered.

For the normal, uniform and double exponential dis-

tributions, the location and scale parameters were the mean

and the square root of the variance of a standard extreme

value distribution. The null distribution had zero loca-

tion parameter and unit scale parameter. For the exponen-

tial, logistic and gamma distributions, location and

scale parameters for both null and alternative distribu-

tions were set to zero and one respectively. As such,

powers shown for the exponential appear quite high in the

completely specified case. Power comparisons for the gamma

distributions with shape parameters 2, 4 and 6 were made

but are not listed in Appendix 4. Also not listed in

Appendix 4 are the results of the power study for the four
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parameter lambda distribution with skewness equal to one

and kurtosis equal to four. Random variables from chi

square distributions with one degree and four degrees of

freedom were also generated. Taking minus the natural

logarithm of these random variables generates samples to

compare against the extreme value distribution which are

analogous to testing chi square random samples against a

two parameter Weibull distribution. Although listed as

X2 distributions, it should be noted that the actual com-

parison for the power determination was made between

- in (X 2 ) and the extreme value distribution.

Table V.7 lists selected results of the extreme

value power study. Parameters for the null distributions

have been estimated and only the results for an alpha level

of .05 are shown. Parts of Table III of reference 51 are

included to allow for comparisons to be made. However,

again caution is advised since the random samples which

generated both sets of powers were different. The values

listed from reference 51 are rounded to compare with a

Monte Carlo sample of size 1000. The D, W2 and A2 are the

standard KS, CVM and AD test statistics. T is Smith and

Bain's correlation statistic and S is Mann, Scheuer and

Fertig's statistic. Both were referenced earlier in this

chapter.

We note several trends. Again we detect the

inferior performance of tests based on the median ranks
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as compared to the corresponding tests using Models 5

and 6. Note that every test based on Models 5 and 6 is

superior to all tests reported by Littell, McClave and Offen

for the normal, double exponential, and logistic alterna-

tives. Results for the uniform and exponential show the

superiority of A5 and A6. Comparisons for the Cauchy indi-
2

cate all test statistics are competitive. The X results

exhibit a curious behavior. Like the T and S statistics,

D5, W5 and A5 all show powers below the alpha level for

some sample size. Thus, it appears that the statistics

2based on Model 5 are biased toward the X, distribution.

This same phenomena occurred in all eight test statistics

when the alternative distribution was a gamma with shape

parameter 4 and in the test statistics based on Models

5 and 6 when the alternative was the lambda distribution

described earlier. These results indicate a bias of the

test statistics toward the gamma and lambda distributions.
2

Results of the X distribution were unexpected. For

sample size 40, the new test statistics based on Models

5 and 6 show approximately 100 percent improvement in power

over their corresponding classical test statistic.

With respect to the goodness of fit tests proposed

for the extreme value distribution it should be noted that

these are equivalent to tests for the two parameter Weibull

distribution if the data are transformed into new random
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variables Y. = - in X. where {Xi } i=l,...,n is the sample

to be compared with the Weibull.

Summary

The level of precision which we were able to attain

in distribution and density function estimation laid the

foundation for extending the application of our new non-

parametric models into the goodness of fit arena. After a

brief survey of the literature, we proposed eight new test

statistics, six based on adaptive Models 5 and 6, and two

of the modified EDF class. The generation of critical

values and the Monte Carlo mechanics of the power studies

was presented for goodness of fit tests for the normal and

extreme value distributions. Appendices 3 and 4 contain

much of the tabular results. What the power comparisons

showed was that tests based on Models 5 and 6 were competi-

tive when the null distribution was normal, and competitive,

if not superior, when the null distribution was the extreme

value. The magnitude of the improvement in power in the

extreme value tests against normal, double exponential,

and logistic alternatives strongly suggests that these new

tests are superior over various alternatives. Tests for

the two parameter Weibull are also possible since they are

equivalent with tests for the extreme value distribution.

Thus far, we have been successful in distribution

and density estimation, and goodness of fit testing.
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The next chapter will venture into the realm of parametric

estimation using our nonparametric distribution and

density function models.

130



VI. Location Parameter Estimation for

Symmetric Distributions

Introduction

Given a random sample of size n from a univariate

continuous probability distribution, we have already

generated nonparametric estimates of the distribution,

density, and hazard functions as well as proposed new good-

ness of fit tests. Rather than a complete distribution

estimate, one mzy wish to estimate only certain character-

istics of the distribution. While the nonparametric pro-

cedure holds promise for estimating parameters from an

assumed model in general, we now propose to examine one

specific class of estimates, namely the estimates of the

location parameter of a symmetric family of distributions.

Our treatment begins with a literature overview of loca-

tion estimates and a discussion of the concept of robust-

ness. Many of the estimators identified were used in the

celebrated Princeton robustness study (Ref 5). Because of

the performance of the new nonparametric models in approxi-

mating underlying distributions, it was conjectured that

estimators based on the models might exhibit some useful

robust characteristics in the location problem. Based on

some very elementary concepts of trimming and Winsorizing,

131



we propose some 48 new estimators of the location parameter

using these new models. Estimator evaluation is accom-

plished in terms of standardized empirical variances deter-

mined from a Monte Carlo analysis considering samples of

size 20. Comparisons of estimators are made using rela-

tive deficiencies, both average and maximum, over subsets

of nine alternate distributions. A large number of pair-

wise comparisons are graphically illustrated via deficiency

plots. Finally, robustness characteristics are evaluated

in the form of stylized sensitivity curves. The judicious

use of the tables and figures of this chapter should allow

an analyst to judge which estimator is appropriate for the

alternative distributions he may expect. We include twelve

other estimators for comparative purposes.

Historical Survey

Like goodness of fit tests, parameter estimation

has not suffered from lack of attention in the literature.

In this section we will briefly examine some recent studies

which bear on the present investigation. We will limit

our discussion to location parameter estimates of a sym-

metric distribution and considerations of robustness.

The concept of robustness is central to our investi-

gation. Robustness, as defined by Hampel, simply means

that small changes in the assumed underlying model should

cause only a small change in the performance of an
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estimator (Ref 30). Excellent surveys of the development

of robust techniques are given by Stigler, Hogg, and Huber

(Refs 38, 42, 91, 93).

Computational formulae and applications for common

robust estimates are given by Moore, Hogg and, to a limited

extent, David (Refs 19, 39, 60). Some specific estimators

deserve mention, particularly the "alphabet" estimators.

Huber developed M-estimators, based on minimizing a function

of the form E P(Xi-T) where p is an arbitrary function.
i

Specific choices of p result in the estimator T being the

sample mean, sample median, or a maximum likelihood esti-

mator (Ref 41). Hampel introduced a family of piecewise

linear M-estimators (Ref 5). Given combinations of order

statistics form a general class known as L-estimators.

Besides trimmed and Winsorized means, this class includes

estimators given by Alam, Harter, Gastwirth and others

(Refs 2, 26, 33).

A recent article by Chan and Rhodin introduces

asymptotically best linear estimates based on a finite num-

ber of symmetrically ranked order statistics. These esti-

mates are shown to be more efficient than optimally trimmed

or Winsorized means (Ref 12). Estimators based on rank

tests, such as the Hodges-Lehmann estimator, belong to the

class of R-estimators (Ref 37). More recently, a family of

D-estimators was investigated by Parr (Ref 61). Originally

proposed by Wolfowitz, a D-estimator minimizes some
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discrepancy (such as the CVM distance) between the empiri-

cal distribution function and an underlying parametric

family (Ref 108). Parr and Schucany have shown that

D-estimation is a competitive technique in estimating the

location parameter of symmetric distributions by using the

normal distribution as a projection model (Ref 63).

D-estimation using a weighted CVM discrepancy is discussed

by Parr and DeWit (Ref 64). Shaler states the conditions

for existence and consistency of minimum discrepancy esti-

mates (Ref 79). Beran proposes and evaluates minimum

Hellinger distance estimators based on a discrepancy using

a density function estimate and the underlying density

function (Ref 6). The relationship between these types

of estimates and goodness of fit tests is given by

Easterling (Ref 22). For an exhaustive bibliography of

minimum distance estimation, refer to Parr (Ref 62).

Various adaptive procedures have emerged. Hogg

lists variations of estimators based on kurtosis, the

statistic and percentile ratios (Ref 38). Harter proposed

a variant of Hogg's estimator using certain maximum likeli-

hood estimates and kurtosis as a discriminant (Ref 60).

Optimal boundaries for various discriminants were deter-

mined by Rugg (Ref 77). Numerous other studies have been

conducted using discriminants and generalized projection

families such as the GEP distribution or the t distribution.

Adaptive techniques incorporating both classical estimation
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procedures and minimum distance constraints have recently

been investigated (Refs 3, 11, 16, 17, 24, 32, 34, 43, 55).

Perhaps the single most comprehensive study of esti-

mates of the location parameter of a symmetric distribution

was the Princeton study (Ref 5). While analyzing some 68

estimators, the authors are quick to point out that their

study is not exhaustive. Stigler presents an interesting

comparison of some of the estimators used in the Princeton

study. He uses 24 original data sets from famous experi-

ments conducted in the 18th and 19th century to determine

the parallax of the sum, the mean density of the earth, and

the velocity of light. Both his comments, while quite nega-

tive toward a large set of new robust estimators, and the

comments of various discussants provide a refreshing discus-

sion of the use of robust procedures (Ref 92).

Proposed New Estimators

The construction of the new nonparametric cum-

ulative and density estimators implicitly gives us a

technique for parameter estimation. This analysis only

attempts to begin to explore the various procedures for

estimating the parameters of an underlying distribution.

We chose the family of symmetric distributions for two

reasons. First, estimates of the location parameter can

be constructed in very simple forms since the mean,

median, and mode of the density are identical.
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Second, comparisons with other estimates are readily

available.

To form the estimators we use four of our nonpara-

metric models--Models 2, 4, 5, and 6. The means and

medians of the models comprise the first eight new esti-

mators. The means were calculated using a modified

Simpson's Rule integration routine and the medians were

found by inverting the distribution function estimate

using a Newton-Raphson technique. Estimators of this

type are identified by Mean-Mn, Median-Mn, etc. where Mn

denotes Model n, n=2,4,5,6.

Two other families of estimators were formed.

Modified trimmed means were calculated by symmetrically

trimming a percentage of observations from each end of

the original ordered sample and then calculating the sample

mean of the nonparametric density defined by the remaining

data points and our models. Five different levels of

trimming were used. The estimators are designated a percent

T-Mn where a is the trimming proportion, a=5(5)25). Modi-

fied Winsorized means were calculated based on the density

function determined by the entire original sample. To

calculate the modified Winsorized means, let a be the
-i

amount (percentage) of Winsorizing. Calculate SF (a)

and SF-I(1-a) where SF is the nonparametric estimator of

the distribution function. Then, the modified Winsorized

mean, x a, is given by:
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SF - (1-)-

k S 1 ( xdSF(x) + a(SF- (a) + SF- (1-a))SF- (a)

What we have effectively done is to take the mean of a

mixed distribution formed by truncating the nonparametric

density at SFI (a) and SFI (1-a) and letting these two

endpoints have a finite probability, namely a. This is

analogous to the Winsorized mean where sample points are

mapped back to the order statistics corresponding to the

amount of Winsorizing. Modified Winsorized means are

designated by a percent W-Mn where a is the amount of

symmetric Winsorizing, a=5(5)25. This gives us a total

of forty-eight new estimators proposed.

Estimator Evaluation

Using the Princeton study as a guide, we conducted a

limited Monte Carlo analysis of three estimators. We gene-

rated 1000 Monte Carlo samples of size 20 from nine different

distributions including the normal, double exponential,

Cauchy and six contaminated normals. The normal, double

exponential and Cauchy distributions all had a zero location

parameter and a unit scale parameter. The contaminated nor-

mals consisted of c percent observations from a normal with

zero mean and a scale parameter of three and (1-e) percent

observations from a standard normal. The contamination per-

centages used were 5, 10, 15, 25, 50, and 75. These distributions
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will be designated e percent 3N where E is the contamina-

tion percentage.

The distributions were grouped into classes of

alternatives to the normal, using the same groupings as

the Princeton study. The gentle, reasonable alternatives

include the normal 5% 3N, 10% 3N, 15% 3N and 25% 3N.

Gentle, unreasonable alternatives include 50% 3N and

75% 3N. Vigorous alternatives include the double exponen-

tial and the Cauchy. A fourth set of alternatives con-

sidered was the set of all distributions tested except

the Cauchy. No specific short tailed distribution was

tested in this portion of the study. The groupings relate

to how the analyst views the practical world his data

comes from. Using the normal distribution as a model of

reality, the sampling mechanism and underlying process

may allow for only mild departures from normality. In

other cases, an analyst may want protection against a

larger deviation in his underlying view of the world. By

generating various sets of alternatives, we may infer the

conditions under which certain estimators perform better.

For each random sample we calculated all 48 esti-

mates. For comparison purposes, we also included the

sample mean, sample median, and ten M-estimators, con-

sisting of six Hubers and four Hampels. The Hubers

includes H20, H17, H15, H12, H10, and H07, while the

Hampels used were 25A, 21A, 17A, and 12A. For a complete
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definition of these estimators and their associated param-

eters, refer to the Princeton study (Ref 5). Results of

this Monte Carlo study for the Hubers and Hampels are in

excellent agreement with the variances given in that same

study.

Table VI.I gives the standardized empirical vari-

ances for all sixty estimators used. Table entries repre-

sent the mean square error of the estimate multiplied by

the sample size. Even when actual variances are available,

we used the empirical ones to compare estimators to keep

relative rankings consistent. For example, the true vari-

ance of the sample mean is 1/n for an underlying normal

population. Thus the table entry should be 1.000. We,

however, will use our empirical variance entry of 0.990

for relative comparisons.

To synthesize this information into meaningful com-

parisons, we introduce the concept of deficiencies. The

deficiency of an estimator is akin to Hogg's "insurance

premium" of using a robust estimate. It is the penalty

you pay if the distributional assumption, you chose not to

make, is actually correct. Deficiencies are calculated as

follows: Let T be an estimator of type i over a set of

test distributions indexed by j. Now let Tinj be the

estimator with the smallest standardized empirical variance

for distribution j.
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variance of Tmin,j
Define efficiency (T.)j = variance of T..

1)3

Then, deficiency = 1 - efficiency. Naturally, one prefers

deficiencies near zero.

For each set of alternatives we calculated two

measures of deficiency, the maximum deficiency of an esti-

mator for all distribution is the class and the average

deficiency over the class. Again, depending on the

sampling situation, one criterion may be more appropriate

than another. An analyst faced with a large penalty for

poor performance, would probably prefer the maximum rela-

tive efficiency criterion.

Tables VI.2 through VI.5 rank each of the 60 esti-

mators with respect to both maximum relative and average

relative deficiencies under each different set of alterna-

tive distributions. Notice in particular, the excellent

performance of the new estimators under gentle, reasonable

alternatives and under all alternatives except Cauchy

(Tables VI.2 and VI.5). Of particular note is the fact

that only one modified Winsorized mean is among the 20

leading estimators under either relative efficiency cri-

terion for any set of alternatives. This estimator,

25%W-M6, is clearly the best of the modified Winsorized

estimators that was proposed. Under gentle, reasonable

alternatives, the modified trimmed mean, 10%T-M2, seems to

perform "better" than the other estimators for either
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deficiency criterion. For protection against vigorous

alternatives Hampel's 12A seems to be the preferred choice.

As expected, no one estimator clearly surpassed

the field. Depending on each sampling situation and the

set of likely alternatives, the choice of an estimator

is largely subject to analyst discretion.

Another comparison can be drawn between estimators

or families of estimators. By plotting the deficiency of

an estimator or a family of estimators under one alterna-

tive distribution versus another alternative, we get a

graphical comparison of the relative performance of the

estimators. Such deficiency plots, using the normal as

one alternative in all cases, were constructed for the

double exponential, Cauchy, and the contaminated normals.

Figures 6.1through 6.16 compare the deficiencies for the

medians of some of the nonparametric models, the modified

Winsorized estimator 25%W-M6, the family of Hubers, the

family of Hampels, and the families of trimmed means for

Models 2, 4, 5, and 6. For each specific alternative dis-

tribution, a set of two plots were generated for clarity.

The first plot shows the comparison of the nonparametric

medians and 25%W-M6 with the Hubers and Hampels. The

medians on this plot are designated Mn where n is the model

number. The second plot shows the comparison among the

four families of trimmed means generated from Models 2, 4,

5, and 6. Each family is labeled by its corresponding
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model number. Since the modified Winsorized means as

families and the means of the nonparametric models did not

appear to be competitive estimators, we chose not to include

their deficiency plots. We also chose to plot only the

deficiency comparisons against a normal world. Based on

the values in Table VI.l other deficiency plots could be

generated for any pair of alternative distributions.

As a final means of estimator evaluation, we use

a tool developed by Hampel--the influence curve. Hampel

describes the influence curve as ". . . essentially the

first derivative of an estimator, viewed as a functional,

at some distribution. . ." (Ref 31). We have chosen to

approximate the influence curves for the finite sample case

by the use of "stylized sensitivity curves," similar to the

ones used in the Princeton study. These stylized sensi-

tivity curves for sample size 20 were generated in the fol-

lowing manner. Let T(x) be a location parameter estimator.

Generate a stylized sample from the normal distribution by

inverting the standard normal distribution function at the

median ranks for a sample size 19. To these 19 stylized

order statistics add a 20th point at regular intervals

across the real line. We chose 201 such data points at

equally spaced intervals on C-3,3]. Calculate the esti-

mator T(x) for each stylized sample of size 20. Plotting

nT(x), where n=20, versus x, the added data point, gives

us our estimated influence curve.
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Figures VI.17 through VI.23 show the stylized sensitivity

curves for some of the more competitive estimators deter-

mined by the relative efficiency criteria.

Viewing the stylized sensitivity curve as a

derivative plot, we can determine how our estimators

change with the addition of a new data point. Consider

the curve for the median of Model 4 in Figure 6.17. The

discontinuity at x -+ 2.4 is due to the adaptive technique

employed in the model. At that point, the percentile ratio

dictated a model change. The other adaptive models were

not similarly effected since the percentile ratios could

not be low enough when using a stylized normal sample.

Unlike the influence curve for the sample median which

becomes constant only a very short distance from zero, the

medians based on the nonparametric distribution models

change slower as the added data point proceeds away from

zero. The sample medium curves for Models 4 and 5 were

still monotonically increasing in absolute value as data

points were added further away from zero. The changes

were very small at the ends of the interval considered,

and were, however, decreasing in magnitude. The stylized

sensitivity curve for Model 6 became constant for x values

outside the interval [X( 3 ), X(1 7 )] where these order sta-

tistics are now based on the stylized sample of size 19.

Curves for the modified trimmed means also become constant

at some point away from zero, just as curves for simple
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trimmed means do. This constant value of the sensitivity

curve indicates that only the sign of the added data point

is being noticed by the estimator. The actual value of

the additional point could be at any point corresponding

to the constant value of the curve. The "influence" on

the estimator of two such points is thus identical. If

an influence curve goes to zero, the estimator totally

rejects the added data point. For our purposes, the value

at which the influence curve initially becomes zero is

termed the rejection point. Only the Hampels considered

in this study have a finite rejection point. No nonpara-

metric estimator proposed completely rejects outliers.

Returning to Figure 6.17, another type of "influ-

ence" can be seen. When the adaptive procedure comes into

play, it lessens the effect on the estimator. Thus, a

data point added to the sample at x=2.8 has a smaller

effect on the median using Model 4 than a data point added

at x=2.3.

The influence curve also allows for various other

measures of robustness. One such measure is gross error

sensitivity, the worst influence an outlier can cause. We

approximate gross error sensitivity by the absolute value

of the supremum of the stylized sensitivity curve. Of

the new estimators proposed, the one with the smallest

approximate gross error sensitivity was the median for

Model 6, with a value of 1.37. When compared with the
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estimators evaluated by Hampel, only the sample median

possesses a smaller gross error sensitivity at the

standard normal distribution (Ref 31). For other measures

of robustness, such as local shift sensitivity, asymptotic

variance, and breakdown points, the reader is referred to

Hampel's article.

Summary

This chapter has addressed one specific problem

in parametric estimation, namely estimating the location

parameter of a symmetric distribution. We began by review-

ing some of the literature available concerning robustness

aspects of the problem and various proposals for esti-

mators. Besides M, L, R, and D estimators, adaptive tech-

niques were also reviewed. Next we proposed some 48 new

estimators based on the new nonparametric models. Model

means and medians as well as modified trimmed and modified

Winsorized means were defined. These 48 estimators were

then evaluated along with the sample mean, sample median

and estimators previously proposed by Huber and Hampel.

A Monte Carlo analysis generated a standardized empirical

variance for each estimator under nine alternative distri-

butions. A relative deficiency comparison was then made

over four classes of alternative distributions. Under

mild deviations from the normal distribution, new non-

parametric estimators possessed smaller average relative
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deficiency or smaller maximum relative deficiency than the

Hubers or Hampels. Estimators and estimator families were

further compared via deficiency plots using alternatives

to the normal distribution. For some of the better esti-

mators, approximate influence curves were presented.

Robustness considerations using these stylized sensitivity

curves showed that some of the new estimators are certainly

competitive and robust.
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VII. Summary, Applications, Limitations

and Improvements

Summary

Motivated by the dominance of the empirical dis-

tribution function in practically every area of statis-

tical inference, this research effort investigated an

alternative to the EDF. After initially examining some

other sample distribution functions and related plotting

positions, we proposed a new nonparametric family of con-

tinuous, differentiable, sample distribution functions.

We showed that members of this family possessed the proper-

ties of a distribution function and also converged uni-

formly to the underlying distribution. Six specific mem-

bers of the family were chosen as models for the rest of

the analysis. The new models were evaluated in three dis-

tinct areas--their ability to model probability distribu-

tion and density functions, their use as bases for goodness

of fit tests, and their use in estimating the location

parameter of symmetric distributions. We compared the dis-

tribution functioq estimates with the EDF using mean inte-

grated square error as the criterion. A limited Monte

Carlo analysis indicated that the new models were superior

to the EDF for most of the distributions tested. The deriva-

tives of the nonparametric distribution functions were

190



also evaluated against specifically designed density esti-

mates under the same error criterion. These new nonpara-

metric models were shown to be competitive with or superior

to other continuous density estimates. Eight new goodness

of fit statistics were generated from the new models. An

extensive Monte Carlo analysis confirmed that the new

goodness of fit tests for the normal and extreme value dis-

tributions had comparable or greater power than the most

powerful established tests. Forty-eight new estimators

for the center of symmetric of a symmetric population were

proposed based on the new models using modified trimmed

and Winsorized means. For relatively mild variations of the

normal distribution certain new nonparametric estimators

were shown to have smaller standardized empirical vari-

ances than other robust estimators.

The overall performance of the six models tested

has been impressive. Using the relatively simple concept

of plotting positions and adding elementary properties of

continuity and differentiability, we generated a very power-

ful tool for data analysis. Several applications of these

models in problems of statistical inference are now sug-

gested.

Applications

Given a random sample, our new nonparametric models

can be used as representations of the distribution, density,
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and hazard functions of the underlying process without

making any distributional assumption. The continuity of

the functions allows for easy graphical depiction. Infer-

ences about the underlying random variable can be made

directly.

The new models can also serve as a discriminant

for picking a parametric model. Having three continuous

functions (distribution, density and hazard functions)

to compare against selected parametric alternatives, one

could choose a parametric model which had the same general

characteristics as the nonparametric estimates. Initially,

this could be done by graphical means, but goodness of

fit criteria, using various distance measures, could pro-

vide a very powerful model discriminant. The modified

distance measures of Appendix 1 allow for comparisons

using different parametric models over the same finite

support and the same probability measure.

Closely related to model discrimination is the

problem of parametric estimation. Beginning with an

assumed parametric family, parameter estimates are made

using a modified distance measure. The parametric family

is changed and the process repeated for each alternative

family. The selection of the parametric model is then

based on the smallest value of the distance criterion.

The advantage of this technique is that both model dis-

crimination and parametric estimation are performed
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simultaneously. A similar approach to the dual problem

of model discrimination and parameter estimation was sug-

gested by Borth, who used entropy as a criterion (Ref 9 ).

Another proponent of this approach is Easterling who

attacks parameter estimation problems by inverting good-

neqs of fit tests (Ref 22). This is precisely what the

above approach does with respect to the modified distance

measures.

Another specific example of the use of the new

nonparametric models is in the field of reliability. Due

to high cost or destructive experiments, the reliability

engineer is frequently faced with sparse data sets and the

need for a tool of statistical inference. Our new models

provide the capability of making reliability estimates

from small data sets without the distribution assumptions

usually made in reliability analysis. The goodness of fit

test results for two widely used models in life testing,

the normal and the extreme value, and the ability to esti-

mate the hazard function by a continuous model indicate

the applicability of the new nonparametric procedures to

reliability problems. The continuity of the sample hazard

function also creates the possibility of goodness of fit

tests based on some distance measure between hazard func-

tions. Tests using hazard functions have recently been

proposed by Kochar (Refs 46, 47). While these tests are
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for the two sample problem, the new nonparametric models

may provide a basis for a one sample test.

The new models also hold promise for use in simula-

tion studies. Typically, Monte Carlo simulation is per-

formed when the distribution of the dependent random vari-

able isunknown. By taking a smaller Monte Carlo sample,

the distribution of the dependent variable can be esti-

mated nonparametrically. While no specific results are

available to date, the potential benefits of reductions of

Monte Carlo sample size warrant investigation. Such a tech-

nique could be used in large scale simulations such as

cost analysis.

While all of the applications considered thus far

dealt with complete random samples, the nonparametric tech-

niques are also capable of modeling other types of data

sets. Grouped data is easily handled, providing that the

maximum number of data points in one group is at least as

small as the number of subsamples used in the model. If

not, small offset values can be introduced to insure that

no subsample has two identical points. The generation of

the nonparametric models from a grouped data set is identi-

cal to that of an ungrouped random sample. As such, we

can get a continuous distribution function estimate and

construct goodness of fit tests for grouped data in exactly

the same manner as we constructed the tests in Chapter V.

194



Limitations

While extremely flexible, the new nonparametric

models are subject to certain limitations. In the theo-

retical development, we arbitrarily set the derivative of

the nonparametric distribution function equal to zero at

each data point to insure differentiability. A consequence

of this step is that lim sf(x) and lim sf(x) exist
X Xmin  X Xmax

and are equal to zero. Obviously some density functions do

not exhibit these same properties, for example, the uniform,

the exponential or a U-shaped beta. All of the nonpara-

metric estimates have density functions whose value is

zero at the endpoints of their finite support. The fixed

endpoint modifications introduced in the adaptive models

attempt to minimize the effect of discontinuities of the

underlying density functions. The nonparametric density

estimates are continuous over RI; in general, density func-

tions are not.

only unimodal densities were examined in the pre-

ceding chapters. A limited analysis was done on a bimodal

distribution, the double triangular. The results indicated

that, while bimodality may be inferred, the density estimate

tended to attach unnecessary weight to the interval between

the modes. A further analysis is necessary to determine

the extent of this limitation.
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Finally, the sinusoidal oscillation of the non-

parametric estimates may be undesirable to some analysts.

While not as smooth as the orthogonal series estimates,

the new estimates do possess the distribution function

properties lacking in the others. In all of the cases

considered in this analysis, the smoothing procedure used

tended to prevent radical motions in both the distribution

and density functions.

Improvements

In examining our nonparametric models we chose

only a representative few members of the family which

showed good performance. We also limited ourselves to

small sets of initial variables for the estimators. While

we attempted to justify all of our choices are reasonable,

we examined only a very small set of possible variables.

The following are suggested as an initial list of possible

improvements to the method. First, other variable sets

for plotting positions, inversion points, etc., need to be

explored. Their evaluation should still depend on a dis-

tance measure criterion, for both the distribution and

density functions, perhaps some linear combination of both.

Second, alternatives to the percentile ratios need to be

considered as discriminants. Third, other functions

besides the trigonometric ones need to be evaluated for

forming the continuous, differentiable models. Some
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functions to consider are probability distribution func-

tions, themselves; an analytic function with non-zero

derivative at the endpoints which could be pieced together

to form the sample distribution function would be ideal.

Finally, modification of the technique to model censored

samples would be an important contribution in reliability

and life testing.

Our investigation of nonparametric, continuous,

differentiable, sample distribution functions has covered

a large area of statistical inference, from distribution

and density estimation, to goodness of fit, to parameter

estimation. Our models have shown some significant

results, particularly at small sample sizes. Further

refinements of techniques based on continuous sample dis-

tribution functions can further advance the field of sta-

tistical inference.
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Appendix 1

Modified Distance Measures

A classical distance measure with respect to an

integral criterion is given by:

6(F,G) =f (F(x)-G(x))2 '(F(x)) dF(x)

where i(F(x)) is some preassigned weight function (Ref 78).

For the Cramer von Mises distance, G(x) is the empirical

distribution function, Sn (x), ?(F(x))=l, and F(x) is the

postulated underlying model. Thus 6(F,S ) is a CVM dis-n

tance measure.

Given a measure, PFn whose corresponding probabil-

ity distribution function F is measurable, we can now con-n

sider an alternative distance measure, 6(FnF). Since

SF(x), as defined in equation 3.6, is continuous and dif-

ferentiable, we can define:

X
m ax  

2
=(SFF) f (SF(x)-F (x)) i(SF(x)) dSF(x)

Xmin

In the classical case, for i(F(x))=l, 6(F,G) is the

integrated square error with a weight of f induced by the

dF(x) term. Using Sn as an approximation to F so that

dSn (x) approximates f(x) dx results in 6(F,G)Z
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f (F(x) -G(x)) dS (x)•

which is the average square error between the distribution

functions F and G (Refl05). Since F is approximated by

SF, we can also approximate the integrated square error

6(F,SF) by 6(SF,F), where t(SF(x))=l.

The following are some classical and modified

distance measures used in the analysis where F is the under-

lying distribution function and SF is the continuous dif-

ferentiable sample distribution function. Each distance

measure is listed only with respect to closeness of the

distribution functions F and SF. Substitution of f and sf

for F and SF respectively in only the absolute value or

squared terms gives the corresponding distance measure for

the density functions. Note that the argument of both the

weight function p and differentiation operator D is still

the distribution function, not the density function.

1. Kolmogorov-Smirnov (KS) distance

6(F,SF) = sup I F(x) - SF(x)I
-00<X<00

approximated by max I F(Xi)-SF(Xi) I
i

2. KS integral distance

6(F,SF) =f I F(x)-SF (x) IdF(x)
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3. Modified KS integral distance

6(SF, F) f I SF(x)-F(x) I dSF(x)

4. Cramer von Mises (CVM) integral distance

S(F,SF) = f (F(x)-SF(x)) dF(x)

5. Modified CVM integral distance

5(SF,F) = f (SF(x)-F(x))2 dSF(x)

6. Anderson Darling (AD) integral distance

6(F,SF) = f (F(x)-SF(xI)2/[F(x) (1-F(x)] dF(x)

7. Modified AD integral distance

6(SF,F) = f (SF(x)-F(x))2/[(SF(x) (I-SF(x))] dSF(x)
-00

8. Average square error

1n 2
ASE n E (F(Xi)-SF(Xi))
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Appendix 2

Generalized Exponential Power (GEP) Distribution

The Generalized Exponential Power distribution is a

three parameter family of symmetric distributions whose tail

length ranges from extremely platykurtic to extremely

leptokurtic (Ref 60). While, in general, the distribution

function does not exist in closed form, the density func-

tion depends on p, a, and p, location, scale, and shape

parameters respectively.

f~x~u u~p) Pg(P) exp F- g (P) Ix-11 11P
f~x;,a~) =2P(i/p)a ex

where
g(p) = [r(i/p)

and -CO<x<C, -w<P<CO, O<o<W, l<_p<

2
For this distribution, E(X)=p and Var(X)=a

Three special cases occur for specific choices of

the shape parameter p:

1. p=l reduces the GEP distribution to the Laplace

or double exponential distribution.

2. p=2 reduces the GEP distribution to the normal

distribution.
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3. As p *, the GEP distribution approaches the

uniform distribution. Although p-- is a limiting case,

we include the uniform distribution to complete the family.

To avoid the limit argument in discussions, we will con-

sider p=- to represent the uniform distribution.
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Appendix 3

Critical Values

Tables A3.1 through A3.10 list the critical values

of the eight new test statistics--D5, D6, DMR, W5, W6, WMR,

A5, and A6. Two null hypothesis situations are considered:

(1) the null distribution completely specified, and (2) the

null distribution parameters estimated. For the normal

distribution, the parameters were estimated using the uni-

formly minimum variance unbiased estimates X and S. For

the extreme value distribution, the parameters were esti-

mated using the maximum likelihood method. A Newton Raphson

iteration scheme was employed. Critical values for the

normal distribution are listed in Tables A3.1 through A3.5.

Critical values for the extreme value distribution are

listed in Tables A3.6 through A3.10. Values are given for

sample sizes 10(10)50 and alpha levels .20, .15, .10, .05,

.025, and .01.
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TABLE A3.1

CRITICAL VALUES--NORMAL DISTRIBUTION--
SAMPLE SIZE 10

Null Distribution Copletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .2249 .2436 .2739 .3147 .3503 .3914
D6 .2238 .2439 .2712 .3108 .3487 .3903
DMR .2656 .2846 .3114 .3509 .3853 .4192
W5 .2236 .2667 .3429 .4114 .5578 .7164
W6 .2090 .2549 .3178 .4243 .5218 .6767
wR .2239 .2622 .3240 .4258 .5106 .6509
A5 1.997 2.451 3.082 4.416 5.631 7.669
A6 1.812 2.193 2.806 4.013 5.370 7.306

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .08559 .09379 .1045 .1202 .1342 .1519
D6 .0961 .1042 .1147 .1303 .1455 .1605
DMR .1622 .1721 .1855 .2042 .2188 .2374
W5 .02626 .03120 .03801 .05103 .06626 .08648
m .02866 .03469 .04270 .05676 .06899 .09081

.07258 .07960 .09003 .1075 .1214 .1478
A5 .3596 .4414 .5551 .7616 1.024 1.312
A6 .3700 .4482 .5782 .7959 1.069 1.353
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TABLE A3.2

CRITICAL VALUES--NORMAL DISTRIBUTION--
SAMPLE SIZE 20

Null Distribution Caletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1521 .1666 .1885 .2160 .2354 .2685
D6 .1572 .1725 .1927 .2228 .2428 .2712
DMR .2034 .2177 .2373 .2687 .2922 .3205
W5 .2018 .2491 .3199 .4267 .5299 .6916
w .2024 .2509 .3200 .4271 .5316 .6788
Wm .2314 .2749 .3445 .4550 .5551 .6838
A5 1.447 1.755 2.183 2.907 3.791 5.325
A6 1.435 1.760 2.168 2.837 3.809 5.157

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .05548 .06104 .06730 .07698 .08629 .09618
D6 .07071 .07698 .08498 .09649 .1083 .1204
DM .1335 .1409 .1510 .1646 .1754 .1921
W5 .02286 .02728 .03373 .04573 .05793 .07241
m .03240 .03866 .04739 .06295 .07948 .09941
vm .07858 .08654 .09843 .1212 .1396 .1662
A5 .2057 .2477 .3187 .4829 .6855 .9754
A6 .2656 .3250 .4123 .6126 .8104 1.112
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TABLE A3.3

CRITICAL VALUES--NORMAL DISTRIBUTION--
SAMPLE SIZE 30

Null Distribution Conpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1252 .1368 .1521 .1738 .1940 .2195
D6 .1281 .1390 .1540 .1765 .1962 .2232
DMR .1717 .1835 .1992 .2211 .2407 .2661
WS .1970 .2421 .3007 .4067 .5189 .6636
w .1982 .2428 .3015 .4068 .5243 .6624

.2365 .2757 .3371 .4365 .5554 .7058
A5 1.281 1.530 1.928 2.556 3.456 4.562
A6 1.277 1.534 1.903 2.563 3.396 4.517

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .05076 .05525 .06136 .07162 .08047 .08940
D6 .05670 .06168 .06866 .07950 .08895 .09939
DHR .1130 .1194 .1275 .1414 .1520 .1659
W5 .02544 .03011 .03764 .05045 .06426 .08333
m .03025 .03560 .04392 .05904 .07528 .09601

.07743 .08660 .09949 .1208 .1415 .1699
AS .1816 .2198 .2747 .3948 .5619 .7823
A6 .2102 .2534 .3162 .4585 .6245 .8625
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TABLE A3.4

CRITICAL VALUES--NORMAL DISTRIBUTION--
SAMPLE SIZE 40

Null Distribution Caopletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1066 .1162 .1289 .1511 .1709 .1916
D6 .1100 .1194 .1314 .1528 .1726 .1948
DNR .1517 .1619 .1752 .1963 .2161 .2380
W5 .1957 .2234 .2915 .4101 .5133 .7017
w .1992 .2370 .2942 .4137 .5198 .7071
rm .2388 .2800 .3354 .4610 .5670 .7371
A5 1.159 1.390 1.723 2.367 3.176 4.183
A6 1.188 1.421 1.744 2.388 3.193 4.154

Null Distribution Pararreters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .04336 .04753 .05264 .06066 .06760 .07505
D6 .04942 .05352 .05936 .06798 .07591 .08455
DMR .1016 .1075 .1134 .1239 .1346 .1456
W5 .02434 .02861 .03571 .04881 .06033 .07552
m .02997 .03510 .04333 .05841 .07208 .08959

.07907 .08729 .09978 .1211 .1433 .1654
A5 .1619 .1902 .2424 .3364 .4312 .5763
A6 .1964 .2309 .2864 .3942 .5003 .6480

217



TABLE A3.5

CRITICAL VALUES--NORMAL DISTRIBUTION--
SAMPLE SIZE 50

Null Distribution Ccmpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .09375 .1026 .1139 .1324 .1491 .1657
D6 .09685 .1054 .1167 .1349 .1516 .1692
DMR .1363 .1456 .1583 .1748 .1926 .2129
W5 .1848 .2215 .2847 .3998 .4935 .6352
w .1903 .2287 .2921 .4070 .5046 .6440

.2325 .2740 .3305 .4510 .5541 .6931
A5 1.075 1.267 1.624 2.173 2.748 3.598
A6 1.112 1.319 1.659 2.218 2.784 3.619

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .03915 .04272 .04772 .05455 .06073 .06843
D6 .04427 .04821 .05378 .06124 .06832 .07633
DMR .09219 .09740 .1040 .1136 .1229 .1329
W5 .02435 .02934 .03571 .04717 .05780 .07374
W .03006 .03597 .04413 .05770 .07118 .08846

.07966 .08906 .1010 .1237 .1421 .1675
A5 .1620 .1911 .2335 .3120 .3920 .5080

A6 .1935 .2258 .2796 .3719 .4662 .5880
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TABLE A3.6

CRITICAL VALUES--EXTREME VALUE DISTRIBUTION--
SAMPLE SIZE 10

Null Distribution Cctrpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .2318 .2534 .2808 .3256 .3656 .4104
D6 .2269 .2503 .2769 .3205 .3579 .4057
DMR .2660 .2873 .3108 .3536 .3891 .4384
W5 .2401 .2868 .3559 .4802 .6194 .8060
w .2193 .2655 .3270 .4444 .5766 .7443
WMR .2258 .2640 .3277 .4284 .5502 .7121
A5 2.060 2.578 3.269 4.516 6.049 8.173
A6 1.864 2.308 2.970 4.104 5.680 8.139

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .08819 .09628 .1064 .1234 .1382 .1589
D6 .09683 .1052 .1162 .1316 .1446 .1646
Dm .1646 .1739 .1867 .2069 .2247 .2471
W5 .03060 .03724 .04607 .06375 .08351 .1066
w .03277 .03936 .04948 .06446 .08231 .1068
WMR .07576 .08359 .09478 .1124 .1320 .1544
A5 .3451 .4313 .5539 .7675 .9640 1.344
A6 .3586 .4367 .5500 .7644 1.010 1.340
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TABLE A3.7

CRITICAL VALUES--EXTREME VALUE DISTRIBUTION--
SAMPLE SIZE 20

Null Distribution Ccmpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1552 .1710 .1899 .2183 .2456 .2737
D6 .1585 .1733 .1911 .2211 .2489 .2760
DMR .2048 .2183 .2356 .2661 .2911 .3183
W5 .2122 .2627 .3331 .4530 .5681 .7441
m .2061 .2516 .3201 .4363 .5523 .7129

.2336 .2722 .3316 .4491 .5514 .7138
A5 1.495 1.811 2.265 3.111 4.112 5.772
A6 1.465 1.767 2.202 3.014 4.056 5.731

Null Distribution Parameters Estimated

Alpha Level
Statistic .20 .15 .10 .05 .025 .01

D5 .061170 .06642 .07342 .08512 .09431 .1078
D6 .06939 .07652 .08366 .09587 .1076 .1201
DNR .1313 .1385 .1476 .1627 .1781 .1946
W5 .02757 .03302 .04118 .05543 .07108 .09624
W6 .03237 .03841 .04727 .06333 .08083 .1098
N4 .07786 .08604 .09769 .1182 .1411 .1690
A5 .2189 .2724 .3623 .5310 .7965 1.185
A6 .2478 .3004 .3953 .5806 .8457 1.244
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TABLE A3.8

CRITICAL VALUES--EXTREME VALUE DISTRIBUTION--
SAMPLE SIZE 30

Null Distributicn Ccarpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1245 .1360 .1512 .1751 .1958 .2205
D6 .1261 .1375 .1524 .1764 .1965 .2226
DMR .1697 .1818 .1992 .2221 .2411 .2623
W5 .1988 .2383 .2968 .4213 .5244 .6631
w .1965 .2358 .2940 .4128 .5252 .6636
wR .2297 .2686 .3279 .4317 .5418 .6765
A5 1.279 1.523 1.909 2.587 3.339 4.461
A6 1.273 1.504 1.881 2.572 3.197 4.156

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .05289 .05714 .06325 .07253 .08125 .09205
D6 .05660 .06117 .06748 .07660 .08682 .09707
DNR .1120 .1178 .1252 .1385 .1494 .1625
W5 .02788 .03293 .04078 .05513 .07074 .09445
w .03094 .03655 .04480 .05850 .07518 .09842
wm .07716 .08507 .09728 .1194 .1419 .1678
A5 .1999 .2376 .2998 .4358 .5973 .8912
A6 .2175 .2562 .3186 .4448 .6115 .9352
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TABLE A3.9

CRITICAL VALUES--EXTREME VALUE DISTRIBUTION--
SAMPLE SIZE 40

Null Distribution Ccmrpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .1081 .1176 .1321 .1531 .1679 .1850
D6 .1098 .1206 .1348 .1542 .1693 .1869
DMR .1507 .1623 .1762 .1953 .2124 .2309
W5 .1974 .2406 .2960 .4171 .5250 .6448
W6 .1969 .2398 .2957 .4152 .5133 .6365

.2331 .2735 .3401 .4477 .5476 .6613
A5 1.176 1.398 1.764 2.398 3.028 3.799
A6 1.186 1.414 1.754 2.367 3.022 3.826

Null Distribution Parameters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .04923 .05265 .05720 .06406 .07202 .07997
D6 .05134 .05524 .06006 .06870 .07629 .08472
DMR .1008 .1059 .1130 .1242 .1336 .1455
W5 .03104 .03627 .04378 .05671 .07083 .09323
w .03443 .03922 .04729 .06188 .07814 .09916
WMR .08026 .08938 .1025 .1234 .1428 .1676
A5 .2109 .2503 .2995 .4034 .5309 .7445
A6 .2296 .2648 .3236 .4309 .5654 .7817
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TABLE A3.10

CRITICAL VALUES--EXTREME VALUE DISTRIBUTION--
SAMPLE SIZE 50

Null Distribution Ccmpletely Specified

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .09797 .1067 .1181 .1363 .1530 .1727
D6 .09998 .1092 .1199 .1376 .1555 .1757
DNR .1385 .1479 .1590 .1769 .1933 .2153
W5 .2042 .2425 .3032 .4239 .5267 .6965
w .2038 .2447 .3002 .4242 .5226 .6935

.2433 .2788 .3440 .4537 .5596 .7183
A5 1.173 1.403 1.733 2.345 2.978 3.813
A6 1.187 1.420 1.744 2.343 2.969 3.780

Null Distribution Paramters Estimated

Alpha Level

Statistic .20 .15 .10 .05 .025 .01

D5 .04586 .04870 .05278 .05896 .06472 .07132
D6 .04669 .04976 .05413 .06058 .06797 .07452
DMR .09065 .09508 .1014 .1110 .1185 .1295
W5 .03198 .03692 .04404 .05700 .06991 .08755
w .03388 .03984 .04734 .06140 .07556 .09243
vm .07911 .08751 .1006 .1185 .1392 .1647
A5 .2155 .2502 .2987 .3916 .4956 .6571
A6 .2271 .2637 .3173 .4142 .5208 .6863
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Appendix 4

Power Comparisons

Tables A4.1 through A4.12 list the results of power

comparisons made using the normal and extreme value dis-

tributions in the null hypothesis. Tables are listed by

null distribution type (normal or extreme value), null

hypothesis type (completely specified or parameters esti-

mated) and alpha level (.10, .05, pr .01). Each table

includes eight distributions as alternative hypotheses and

five different random sample sizes (four for the Cauchy).

All entries represent the number of samples significant at

the given alpha level from a Monte Carlo sample size of

1000 trials. Actual power of each test may be obtained by

dividing each entry by 1000.
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Appendix 5

Computational Methods Used

This appendix describes various numerical methods

used throughout this study. In particular, we will

describe methods for random variate generation, numerical

integration, and iterative solution for inverting the

approximated distribution function. All calculations were

performed using a CDC Cyber 74/750 system located at the

Aeronautical Systems Division Computer Center, Wright-

Patterson Air Force Base, Ohio.

Generating Random Variates

Depending on the underlying distribution, random

variates were generated from two main sources. Uniform

random variables were constructed using the multiplicative

congruential generator described by McGrath and Irving

(Ref 54). Random samples from the double exponential,

exponential, triangular, and extreme value distributions

were generated by applying the corresponding inverse proba-

bility integral transform to a set of uniform random vari-

ates. Random samples from the four parameter X family of

Rambert, et al., were generated by transforming uniform

random variates using the percentile function R(p) =
3_ 

X4]1 + [p -(l-p) / 2 where the Xl, i=l,...,4 are the
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parameters of the specific A distribution, and p is a uni-

form random variate on [0,1] (Ref 72). Subroutines from

the International Methematical and Statistical Libraries

were used to generate random samples for the normal (using

the polar method) Weibull, gamma, beta, and Cauchy dis-

tributions. If necessary, location and/or scale transforma-

tions were applied to adjust standard variates to specific

underlying populations.

Numerical Integration

Two specific procedures used for evaluating the
b

finite integral,fa f(x) dx, were Gaussian quadrature and

Simpson's rule. Initially, in determining the variables

for the nonparametric estimators, a sixteen point Gauss-

Legendre quadrature scheme was used for the following

integrands

1. (F(x)-SF(x))2 sf(x)

2
2. (f(x)-sf(x)) sf(x)

Quadrature points and weights were taken from tables in

reference 1, page 916. The interval of integration was

the support of the nonparametric estimate [X xI.
min, max

To evaluate the integrals used for comparisons

of approximate mean integrated square error for both dis-

tribution and density functions and the integrals used in

calculating the goodness of fit statistics, we used a

modified Simpson's rule with error control (Ref 66). Given
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an ordered sample of size n and the two endpoints of the

support of the nonparametric approximation, we constructed

n+l intervals of the form [X(i),X(i+l)] i=O,...,n where

X (0)=Xmi and X (n+l}=X For each integrand, we used
()min(~l max

Simpson's rule on each interval. If the summed value of

the approximation was not sufficiently close, we divided

each interval in half and repeated the procedure. Inte-

grands evaluated by this method included:

1. (F(x)-SF(x))2 sf(x)

2. (f(x)-sf(x)) 2 sf(x)

3. (F(x)-SF(x))2 sf(x)/[SF(x)(I-SF(x))]

4. sf(x)

A stopping criterion for integral convergence was

selected based on the construction of our nonparametric

density estimate. We know that fsf(x) dx= 1 on [XminXmax]

We also know that the underlying distribution function F

and density function f are reasonably smooth. By using

subintervals based on the data points, we should be able

to detect any "spikes" in the integrands. Using this

information, we used as the approximation to each integral,

the value of the Simpson's rule calculations when

isf(x)-.010.01. Since sf(x) is the "noisiest" contribu-

tion to the four integrands, approximating sfiet dx to

a sufficient degree gives us a measure of confidence in

the remaining integral approximations.
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To see numerically how the choice of stopping

criterion affected the other integrals, we generated

twenty-five random samples of size 100 from the standard

normal distribution. Then we calculated the modified CVM

integrals for both the distribution and density functions

as well as the integral of the density function approxi-

mation using all six nonparametric models. We used two

different stopping criterion values, Ifsf(x) dx-1.0 I<ERR

where ERR = 0.01 or 0.001. Table A5.1 lists the average

values of the integrals for the twenty-five samples. Each

entry corresponds to a specific model approximation, inte-

grand and choice of ERR. A comparison between the entries

corresponding to ERR choices of 0.01 and 0.001 for each

integrand shows that a tighter bound on the integral of the

density approximation has a negligible effect. The conver-

gence error criterion was then set at 0.01.

To evaluate the integrals associated with the loca-

tion parameter estimates of Chapter VI, we again used a

modified Simpson's rule. We divided the support into sub-

intervals using the data points as before. However, since

we only needed one integral evaluated, we chose a straight-

forward application of Simpson's rule with error control.

The integral, Ifx st(x) dx, was said to converge when the

change in the approximation was less than 0.1 percent.
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Iterative Solution for
Inverting the Approximated
Distribution Function

To calculate the pseudosample points for the smooth-

ing routine or to calculate any percentile, such as the

median, we needed a method for inverting the sample dis-

tribution function. Since we can calculate the density

function at any point a Newton Raphson iteration scheme

was employed. The nth approximation x(n ) was calculated

as x(n)=x (n-l) - SF(x(n-l) )/sf(xln-l)). Convergence was

defined when the absolute value of the difference between

successive approximations was less than 10- 5 (Ref 66).

254



Appendix 6

A Finite Support Modification to Insure

Inclusion of All Original Data Points

For either an extremely leptokurtic or platykurtic

distribution, the smoothing routine sometimes generated a

pseudosample for which the support of the nonparametric

distribution function did not contain the interval

[X(1),X (n) ] where X(I ) and X(n) are the extreme order sta-

tistics of the original sample. To insure that the inter-

val [XminXmax ], the support generated by the pseudosample,

the following algorithmi was added. If Xmin' the lower end-

point of the finite support based on a pseudosample, is

greater than X(1), the smallest order statistic of the

original sample, replace the inversion point of the pseudo-

sample determined by FS-I(G1 ) by X(1) , and similarly for

Xmax less than X (n) . This modification uses the informa-

tion that the distribution function is defined over at

least the set [X(1),X (n) ], and also only adds enough tail

weight by adjusting the pseudosample to insure that the

final support contains the original data points.

The above modification was used for all models

except Model 3. Since Model 3 uses fixed X and X(0) (n+l)

extrapolation points for all subsamples, we merely set
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Xmnand/or X X where X anX
mi n  () max (n+l)' (0) and X(n+l)

were the extrapolation points based on the entire sample,

whenever the interval [X iXmax] did not contain

(X( 1 ) ,X(n) This again insured that the final distribu-

tion function approximation was defined over a finite sup-

port which contained all of the data points.
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